C.A.D. / C.A.M. (CBCS Pattern) M.Tech. Third Semester Old+CBCS (C.B.S. Pattern)

PCDS322 -Elective-III : Modelling and Simulation

P. Pages : 1 Time : Three Hours				GUG/W/18/11040 Max. Marks : 70	
	Note	2. 3. 4.	All questions carry equal marks. Answer any five questions. Assume suitable data wherever necessary. Use of calculator is permitted.		
1.	a)	What is	modelling? Explain with neat sketch various types of models.	6	
	b)	and mas $F=1+0$	ang dash pot mechanism spring constant $k = 1.5$ kgf/cm, damping = 0.7 kgf-s/cm as $m = 3$ kg. This is acted upon by force. 0.5t $(0 \le t \le 1)$ and $F = 1.5 - (t - 1)$.t $(1 < t \le 2)$ as position vector x and acceleration of mass at $t = 1.3$ using simulation time of 0.1.	7	
2.	a)	What sh	hould be the considerations while modelling inventory system if an inventory?	5	
	b)	What is	empirical relationship? In which situation is it used as a model?	4	
	c)	Explain	cellular manufacturing.	5	
3.	a)	_	elf congruential method, generate 15 random numbers. Evaluate whether these s are uniform and independent.	7	
	b)	What do	you understand by direct transformation? When and how is it used?	7	
4.		given be 6, 8, 10, 7, 8, 9, 1 Using lo	bservations for repairing, similar type of machines were made and time to repair is elow: 12, 15, 19, 25, 30, 35, 40 10, 13, 15, 17, 20, 24, 27 ocation factor 3, scaling 20 and form factor 1.5, check suitability of weighbut tion for this data.	14	
5.	a)	Probabilit takes rejected	eet metal industry blanking, forming and shearing machine are working in line. lity of failure of these machines is 0.01, 0.05, 0.005%. Once the machine has failed, 10 to 20 minutes distributed uniformly to restart. The part at that time should be . It takes 0.8 min (fixed) for operation on each machine. Develop simulation strategy percentage rejection of production system.	10	
	b)	How ha	s internet influenced simulation?	4	
6.	a)		program to insert, delete and find data related to event from doubly linked list? nember of this list has 3 components namely event code, event name, early time.	10	
	b)	What is	system model? Explain the type of model.	4	
7.		mercury If h _m is	drop after ventury is measured using U-tube manometer is partly filled with v, diameter of U tube is 10 mm. Pressure acting two limbs are 1.25 and 1.05 kg/cm ² . manometric head then V = sqrt {2g [(1.25 - 1.05.t) - h_m]} At t = 0, h_m = 0. The reading indicating by manometer at 1 sec, using fixed time advancement of 0.1	14	
8.	a)		e the components of material handling system? Suggest possible events and step ation of such system.	7	
