## Electronics & Communication Engineering (CBCS Pattern) M. Tech. First Semester CBCS + Old (CBS Pattern)

## PECS11 - Probability Theory and Stochastic Processes

P. Pages: 2

Time: Three Hours Max. Marks: 70

Notes: 1.

- Attempt any five questions.
- All questions carry equal marks. 2.
- Illustrate your answers wherever necessary with the help of neat sketches. 3.
- Define Distribution function and Briefly explain its properties. 1.

7

7

GUG/W/18/10978

- A certain test for a particular cancer is known to be 95% accurate. A person submits to be b) the test and results are positive. Suppose that the person comes from a population of 1,00,000 where 200 people suffer from that disease. What can we conclude about the probability that the person under the test has that particular cancer?
- Determine binomial distribution for which mean is 4 and variance is 3. 2. a)

7 7

b) A fair coin is tossed twice and let random variable X represent number of heads. find  $F_{\mathbf{X}}(\mathbf{X})$ .

14

A set of 8 symmetrical coins was tossed 256 times and the frequencies of throws observed 3. a) were as follows

| were as romo ws. |   |   |    |    |    |    |    |    |   |
|------------------|---|---|----|----|----|----|----|----|---|
| Number of heads  | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8 |
| Freq. of throws  | 2 | 6 | 24 | 63 | 64 | 50 | 36 | 10 | 1 |

Fit a binomial distribution to the data and hence as otherwise calculate the theoretical frequencies.

Find the first four moments about mean for a random variable X having density function. 4. a)

7

$$f(x) = \begin{cases} \frac{4}{81}x(9-x^2) & 0 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

b) Define continuous random variable. State its properties. 7

7

5. Let  $X \sim U([\pi, -\pi])$ . Find the distributions of random variable  $y = \cos x$  the density a) function. X is given by.

$$f_{X}(x) = \begin{cases} 1/2\pi & \text{if } x \in (-\pi, \pi) \\ 0 & \text{otherwise} \end{cases}$$

Explain Normal distribution with its properties. b)

7

- Given  $f(x) = \begin{cases} x/2 & \text{if } 0 \le x \le 2 \\ 0 & \text{otherwise} \end{cases}$  and  $g(y) = \begin{cases} 2(1-y) & \text{if } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$
- 7. a) Suppose X (t) is normal process with n(t)=3,  $c(t_1, t_2)=4e^{-0.2|t_1-t_2|}$

Determine the function y(x) which will transform f(x) into g(y).

- a) Find the probability that  $X(5) \le 2$
- b) Find the probability that  $|x(8)-X(5)| \le 1$ .
- b) Establish necessary and sufficient condition for the process.  $X(t)=a\cos w t + b\sin wt$ .
- 8. a) Explain Markov Process in details.
  - b) Explain wide sense Stationary Process. 7

\*\*\*\*\*\*\*