M.Sc.-II (Mathematics) (C.B.C.S. Pattern) Sem-IV PSCMTHT20.3 - Coding Theory Paper-XX (Optional)

P. Pages: 2 GUG/S/19/11405 Time : Three Hours Max. Marks: 100 Solve all **five** questions. Notes : 1. 2. All questions carry equal marks. UNIT – I Prove that : for a BSC with crossover probability $p < \frac{1}{2}$, the maximum likelihood decoding 1. 10 a) rule is the same as the nearest neighbor decoding rule. Suppose that codewords from the binary code {000, 100, 111} are being sent over BSC 10 b) with crossover probability P = 0.03. Use the maximum likelihood decoding rule to decode the following received words : i) 010 011 ii) OR c) Define. 10 i) Distance of a code. ii) (n,m,d) - code.Find the distance of the ternary code $C = \{00000, 00111, 11111\}.$ Prove that = A code with distance d is an exactly (d-1) – error – detecting code. 10 d) UNIT – II 2. If C is a linear code and H a parity-check matrix for C. Then prove that 10 a) C has distance $\geq d$ if and only if any d-1 columns of H are linearly independent. i) C has distance $\leq d$ if and only if H has d columns that are linearly dependent. ii) If $x, y \in F_2^n$, then prove that $\omega t(x+y) = \omega t(x) + \omega t(y) - 2\omega t(x*y)$. b) 10 OR If C is a linear code of length n over F_{a} , the prove that 10 c) $|\mathbf{C}| = q^{\dim(\mathbf{c})}$ i) ii) C^{\perp} is a linear code and $\dim(C) + \dim(C^{\perp}) = n$.

c) If C is a linear code over F_q . Then prove that $d(c) = \omega t(c)$.

1

iii) $(C^{\perp})^{\perp} = C.$

10

UNIT – III

- 3. 10 a) If I is a non-zero ideal in $F_q[x]/(x^n-1)$ and g (x) a nonzero monic polynomial of the least degree in I. Then prove that g (x) is a generator of I and divides $x^{n} - 1$.
 - 10 b) Let g (x) be the generator polynomial of an ideal of $F_q[x]/(x^n-1)$. Then prove that the corresponding cyclic code has dimension k if the degree of g(x) is n-k.

OR

- Let g (x) be the generator polynomial of a q-ary [n, k] cyclic code C. Put c) 10 $h(x) = (x^n - 1)/g(x)$. Then prove that $h_0^{-1}h_R(x)$ is the generator polynomial of C^{\perp} , where h_0 is the constant term of h(x).
- Write down steps of decoding algorithm for cyclic codes. d)

UNIT – IV

- 4. Prove that a narrow-sense binary BCH code of length $n = 2^m - 1$ and designed distance 10 a) $\delta = 2t + 1$ has dimension at least $n - m(\delta - 1)/2$.
 - b) Prove that a BCH code with designed distance δ has minimum distance at least δ . 10

OR

10 c) Prove that a nonzero element r of F_p is a nonzero quadratic residue modulo p if and only if $r \equiv a^2 \pmod{p}$ for some $a \in F_p^*$.

d) Prove that two polynomials
$$g_Q(x)$$
 and $g_N(x)$ belong to $f_\ell[x]$. 10

- 5. Define. 5 a) i) Communication channel. ii) Memoryless communication channel.
 - Find all possible generator matrices for binary linear code $C = \{000, 001, 100, 101\}$.
 - Let C be the binary [7,4] cyclic code generated by $g(x) = 1 + x^2 + x^3$. Find Parity-5 c) Check matrix of C.
 - For a finite field F_{11} compute Q_{11} , N_{11} , $4Q_{11}$ and $2Q_{11}$. 5 d)

b)

10

5