Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that : for a BSC with crossover probability $\mathrm{p}<1 / 2$, the maximum likelihood decoding rule is the same as the nearest neighbor decoding rule.
b) Suppose that codewords from the binary code $\{000,100,111\}$ are being sent over BSC with crossover probability $\mathrm{P}=0.03$. Use the maximum likelihood decoding rule to decode the following received words :
i) 010
ii) 011

OR

c) Define.
i) Distance of a code.
ii) (n,m,d) - code.

Find the distance of the ternary code

$$
C=\{00000,00111,11111\} .
$$

d) Prove that $=$ A code with distance d is an exactly $(\mathrm{d}-1)-$ error - detecting code.

UNIT - II

2. a) If C is a linear code and H a parity-check matrix for C . Then prove that
i) C has distance $\geq \mathrm{d}$ if and only if any $\mathrm{d}-1$ columns of H are linearly independent.
ii) $\quad \mathrm{C}$ has distance $\leq \mathrm{d}$ if and only if H has d columns that are linearly dependent.
b) If $\mathrm{x}, \mathrm{y} \in \mathrm{F}_{2}^{\mathrm{n}}$, then prove that $\omega \mathrm{t}(\mathrm{x}+\mathrm{y})=\omega \mathrm{t}(\mathrm{x})+\omega \mathrm{t}(\mathrm{y})-2 \omega \mathrm{t}(\mathrm{x} * \mathrm{y})$.

OR

c) If C is a linear code of length n over F_{q}, the prove that
i) $\quad|\mathrm{C}|=\mathrm{q}^{\operatorname{dim}(\mathrm{c})}$
ii) $\quad \mathrm{C}^{\perp}$ is a linear code and $\operatorname{dim}(\mathrm{C})+\operatorname{dim}\left(\mathrm{C}^{\perp}\right)=\mathrm{n}$.
iii) $\left(\mathrm{C}^{\perp}\right)^{\perp}=\mathrm{C}$.
c) If C is a linear code over F_{q}. Then prove that $\mathrm{d}(\mathrm{c})=\omega t(\mathrm{c})$.
3. a) If I is a non-zero ideal in $\mathrm{F}_{\mathrm{q}}[\mathrm{x}] /\left(\mathrm{x}^{\mathrm{n}}-1\right)$ and $\mathrm{g}(\mathrm{x})$ a nonzero monic polynomial of the least degree in I. Then prove that $\mathrm{g}(\mathrm{x})$ is a generator of I and divides $\mathrm{x}^{\mathrm{n}}-1$.
b) Let $g(x)$ be the generator polynomial of an ideal of $F_{q}[x] /\left(x^{n}-1\right)$. Then prove that the corresponding cyclic code has dimension k if the degree of $g(x)$ is $n-k$.

OR

c) Let g (x) be the generator polynomial of a q -ary $[\mathrm{n}, \mathrm{k}]$ - cyclic code C. Put $h(x)=\left(x^{n}-1\right) / g(x)$. Then prove that $h_{0}^{-1} h_{R}(x)$ is the generator polynomial of C^{\perp}, where h_{0} is the constant term of $h(x)$.
d) Write down steps of decoding algorithm for cyclic codes.

UNIT - IV

4. a) Prove that a narrow-sense binary BCH code of length $\mathrm{n}=2^{\mathrm{m}}-1$ and designed distance $\delta=2 \mathrm{t}+1$ has dimension atleast $\mathrm{n}-\mathrm{m}(\delta-1) / 2$.
b) Prove that a BCH code with designed distance δ has minimum distance atleast δ.

OR

c) Prove that a nonzero element r of F_{p} is a nonzero quadratic residue modulo p if and only if $r \equiv a^{2}(\bmod p)$ for some $a \in F_{p}^{*}$.
d) Prove that two polynomials $\mathrm{g}_{\mathrm{Q}}(\mathrm{x})$ and $\mathrm{g}_{\mathrm{N}}(\mathrm{x})$ belong to $\mathrm{f}_{\ell}[\mathrm{x}]$.
5. a) Define.
i) Communication channel. ii) Memoryless communication channel.
b) Find all possible generator matrices for binary linear code $\mathrm{C}=\{000,001,100,101\}$.
c) Let C be the binary $[7,4]$ cyclic code generated by $g(x)=1+x^{2}+x^{3}$. Find ParityCheck matrix of C.
d) For a finite field F_{11} compute $\mathrm{Q}_{11}, \mathrm{~N}_{11}, 4 \mathrm{Q}_{11}$ and $2 \mathrm{Q}_{11}$.

