M.Sc. (Part-II) (Chemistry) (CBCS Pattern) Sem IV

PSCCHT13 / PSCHT13 - Spectroscopy Paper-XIII

P. Pages: 3 GUG/S/18/20148

Time: Three Hours

* 3 0 2 7 *

Max. Marks: 80

Notes: 1. All questions are compulsory.

2. All questions carry equal marks.

1. a) i) Give applications of Auger electron spectroscopy.

8

ii) Calculate λ_{max} for the following compound.

b) i) Derive Beers Lambert law & give it's limitations.

8

ii) The λ_{max} for ethylene is about 185 nm while for 1,3 butadiene is 217 nm, Explain using energy level diagram.

OR

c) Give the short note on photoelectron spectroscopy.

4

For 1.0×10^{-4} m solution of compound in hexane λ_{max} & ϵ_{max} are 220 nm & 14,500 respectively. Calculate % transmission.

4

e) Explain the term Bathochromic shift. Why benzene show λ_{max} at 203 nm and phenol at 235 nm.

4

f) Calculate λ_{max} for ethanolic solution in the given compound.

4

2. a) i) Give the splitting pattern for AMX and AX₂ type of molecule.

8

		ii) Predict the structure of compound from the following PMR Data, mol. Formula (C ₉ H ₁₀ O) PMR : δ 2.3 (S, 3H)				
		δ 2.5 (S, 2H)				
		δ 7.5 (M, 5H)				
	b)	i) The PMR spectrum values of 2, 2, trifluoroethanol are given below : i) δ 3.38 (S, 1H) Disappeared on D ₂ O ii) 3.93 (q, 2H) J = 9 H ₂ Account for only these peak in PMR spectrum.	8			
		ii) The 400 MHz PMR spectrum of an organic compound exhibit doublet. The two lines are at $\delta 2.35~\&~2.38$ calculate the coupling constant 'J'.				
		OR				
	c)	Define chemical shift. Explain the factors affecting the chemical shift.	4			
	d)	Predict the structure of compound from ¹³ C NMR having molecular formula - C ₃ H ₅ Cl ₃ & ¹³ C NMR Data				
		δ 32 q, (quarlet)				
		δ 54 t (triplet)				
		δ 87 s (singlet)				
	e)	Deduce the structure of organic compound having PMR Data δin PPM: – 3.4 (S, 3H)	4			
		6.6 (d, 2H)				
		7.5 (d, 2H)				
		9.5 (S, 1H)				
		Molecular formula is $C_8H_8O_2$.				
	f)	Write a note on shift reagent.	4			
3.	a)	An organic compound $C_9H_{10}O_2$ gives the following spectral data:	8			
		$UV: \lambda_{max}$, 257 nm				
		IR : Significant absorption band at 3040, 2950, 1740, 750, 700 cm ⁻¹ PMR : δ (1.96) (S, 3H)				
		5.00 (S, 2H)				
		7.22 (S, 5H)				
		$m/s: m/e 150 (M^+), 108, 91, 77$				
		Deduce the correct structure.				
	b)	i) Write note on DEPT ¹³ C spectra.				
		ii) Write note on quadrupole nuclei & quadrupole moment.	8			
		OR				

2

GUG/S/18/20148

	c)	Explain cos Y technique with suitable example.			
	d)	Give the structure of the compound having following spectral results mol. Formula $C_{10}H_{14}O$			
		PMR : δ in PPM 1.21 (6H, d, J = 7Hz)			
		2.83 (1H, septate $J = 7Hz$)			
		3.72 (3H, S)			
		6.74 (2H, d J = 9 Hz)			
		7.18 (2H d J = 9Hz) Show the peak at m/e 43.			
		-			
	e)	Give the advantages of FT - NMR.	4		
	f)	Discuss the APT technique in brief.	4		
4.	a)	Give the application of Electron diffraction techniques.	8		
	b)	Derive Bragg's equation. How it is useful for structure identification of unit cell.	8		
		OR			
	c)	Explain the term magnetic scattering.			
	d)	Write a note on Wierl equation.	4		
	e)	Give Laue method for identification of unit cell.	4		
	f)	Write a note on Ramchandran diagram.	4		
5.	a)	Define with suitable examples. i) Chromophore	2		
		ii) Auxochrome			
	b)	Give the effect of solvent on $\pi - \pi^*$ and $n - \pi^*$ transition in α , β -unsaturated compound.	2		
	c)	Compare ¹³ C-NMR spectroscopy with ¹ H NMR spectroscopy.			
	d)	Write a note on geminal coupling constant.			
	e)	Write a short note on INADEQUATE technique.			
	f)	Write a note on nuclear overhauser effect.			
	g)	Calculate Miller indices of crystal planes which cut through the crystal axes at – i) 2a, 3b, c ii) 2a, -3b, -3c	2		
	h)	Compare scattering intensity vs scattering angle.	2		
