# M.Sc. (Part-II) (Chemistry) (CBCS Pattern) Sem IV <br> PSCCHT13 / PSCHT13 - Spectroscopy Paper-XIII 

P. Pages : 3

GUG/S/18/20148
Time : Three Hours


Notes : 1. All questions are compulsory.
2. All questions carry equal marks.

1. a) i) Give applications of Auger electron spectroscopy.
ii) Calculate $\lambda_{\text {max }}$ for the following compound.

b) i) Derive Beers Lambert law \& give it's limitations.
ii) The $\lambda_{\text {max }}$ for ethylene is about 185 nm while for 1,3 butadiene is 217 nm , Explain using energy level diagram.

## OR

c) Give the short note on photoelectron spectroscopy.
d) For $1.0 \times 10^{-4} \mathrm{~m}$ solution of compound in hexane $\lambda_{\max } \& \epsilon_{\max }$ are $220 \mathrm{~nm} \& 14,500$ respectively. Calculate $\%$ transmission.
e) Explain the term Bathochromic shift. Why benzene show $\lambda_{\text {max }}$ at 203 nm and phenol at 235 nm .
f) Calculate $\lambda_{\max }$ for ethanolic solution in the given compound.

2. a) i) Give the splitting pattern for $A M X$ and $A X_{2}$ type of molecule.
ii) Predict the structure of compound from the following PMR Data, mol. Formula ( $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ ) PMR :
$\delta 2.3$ (S, 3H)
$\delta 2.5(\mathrm{~S}, 2 \mathrm{H})$
$\delta 7.5(\mathrm{M}, 5 \mathrm{H})$
b) i) The PMR spectrum values of 2, 2, trifluoroethanol are given below :
i) $\delta 3.38(\mathrm{~S}, 1 \mathrm{H})$ Disappeared on $\mathrm{D}_{2} \mathrm{O}$
ii) $3.93(\mathrm{q}, 2 \mathrm{H}) \mathrm{J}=9 \mathrm{H}_{2}$

Account for only these peak in PMR spectrum.
ii) The 400 MHz PMR spectrum of an organic compound exhibit doublet. The two lines are at $\delta 2.35 \& 2.38$ calculate the coupling constant 'J'.

## OR

c) Define chemical shift. Explain the factors affecting the chemical shift.
d) Predict the structure of compound from ${ }^{13} \mathrm{C}$ NMR having molecular formula $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{3} \&{ }^{13} \mathrm{C}$ NMR Data
$\delta 32 \mathrm{q}$, (quarlet)
$\delta 54 \mathrm{t}$ (triplet)
$\delta 87 \mathrm{~s}$ (singlet)
e) Deduce the structure of organic compound having PMR Data
6.6 (d, 2H)
7.5 (d, 2H)
$9.5(\mathrm{~S}, 1 \mathrm{H})$
Molecular formula is $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$.
f) Write a note on shift reagent.
3. a) An organic compound $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ gives the following spectral data :

UV : $\lambda_{\text {max }}, 257 \mathrm{~nm}$
IR : Significant absorption band at 3040, 2950, 1740, $750,700 \mathrm{~cm}^{-1}$
PMR : $\delta(1.96)(\mathrm{S}, 3 \mathrm{H})$
5.00 (S, 2H)
7.22 (S, 5H)
$\mathrm{m} / \mathrm{s}: \mathrm{m} / \mathrm{e} 150\left(\mathrm{M}^{+}\right), 108,91,77$
Deduce the correct structure.
b) i) Write note on DEPT ${ }^{13} \mathrm{C}$ spectra.
ii) Write note on quadrupole nuclei \& quadrupole moment.
c) Explain $\cos \mathrm{Y}$ technique with suitable example.
d) Give the structure of the compound having following spectral results mol. Formula
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$
PMR : $\delta$ in PPM $\quad 1.21(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz})$
$2.83(1 \mathrm{H}$, septate $\mathrm{J}=7 \mathrm{~Hz})$
3.72 (3H, S)
$6.74(2 \mathrm{H}, \mathrm{d}$ J $=9 \mathrm{~Hz})$
7.18 ( $2 \mathrm{H} \mathrm{d} \mathrm{J}=9 \mathrm{~Hz}$ )

Show the peak at m/e 43.
e) Give the advantages of FT - NMR.
f) Discuss the APT technique in brief.
4. a) Give the application of Electron diffraction techniques.
b) Derive Bragg's equation. How it is useful for structure identification of unit cell.

## OR

c) Explain the term magnetic scattering.
d) Write a note on Wierl equation.
e) Give Laue method for identification of unit cell.
f) Write a note on Ramchandran diagram.
5. a) Define with suitable examples.
i) Chromophore
ii) Auxochrome
b) Give the effect of solvent on $\pi-\pi^{*}$ and $n-\pi^{*}$ transition in $\alpha, \beta$-unsaturated compound.
c) Compare ${ }^{13} \mathrm{C}$-NMR spectroscopy with ${ }^{1} \mathrm{H}$ NMR spectroscopy.
d) Write a note on geminal coupling constant.
e) Write a short note on INADEQUATE technique.
f) Write a note on nuclear overhauser effect.
g) Calculate Miller indices of crystal planes which cut through the crystal axes at -
i) $2 \mathrm{a}, 3 \mathrm{~b}, \mathrm{c}$
ii) $2 \mathrm{a},-3 \mathrm{~b},-3 \mathrm{c}$
h) Compare scattering intensity vs scattering angle.

