M.Sc.(Mathematics) (CBCS Pattern) Third Semester
 PSCMTHT14-3 - Paper-XIV (Optional) : Graph Theory

P. Pages : 2

GUG/W/18/11284
Time: Three Hours

Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that if G be a non-empty graph with at least two vertices. Then G is bipartite if and only if it has no odd cycles.
b) Prove that in a graph G there is an even number of odd vertices.

OR

c) Prove that for a tree T with n -vertices then it has precisely n -1 edges.
d) Prove that A graph G is connected if and only if it has a spanning tree.

UNIT - II

2. a) In Dijkstra's algorithm, if at some stage $\lambda(\mathrm{v})$ is finite for the vertex V then. Prove that there is a path from s to v whose length is $\lambda(\mathrm{v})$.
b) Let G be a graph with n vertices, where $\mathrm{n} \geq 2$. then prove that G has at least two vertices which are not cut vertices.

OR

c) Prove that: A connected graph G is Euler if and only if the degree of every vertex is even.
d) Prove that Fleury's algorithm produces an Euler tour in an Euler graph G.

UNIT - III

3. a) Let G be a plane graph with n vertices, e edges, f faces and k connected components, then prove that $\mathrm{n}-\mathrm{e}+\mathrm{f}=\mathrm{k}+1$.
b) State and prove Euler's formula.

OR

c) Show that if a planar graph G of order n and size m has r regions and k components, then $\mathrm{n}-\mathrm{m}+\mathrm{r}=\mathrm{k}+1$.
d) Let G be a connected plane graph with n vertices, e edges and f faces. Let n^{*}, e^{*} and f^{*} denote the number of vertices, edges and faces respectively of G^{*} then prove that $n^{*}=f, e^{*}=e$, and $f^{*}=n$

UNIT - IV

4. a) Prove that if D be a weakly connected digraph with at least two vertices. Then D has a directed Euler trail if and only if D has two vertices u and v such that $\operatorname{od}(\mathrm{u})=\mathrm{id}(\mathrm{u})+1$ and $\mathrm{id}(\mathrm{v})=\operatorname{od}(\mathrm{v})+1$
and, for all other vertices W of $\mathrm{D}, \mathrm{od}(\mathrm{w})=\mathrm{id}(\mathrm{w})$, furthermore, in this case the trail begins at u and ends at v.
b) Prove that : every tournament T has a directed Hamiltonian path.

OR

c) Find the orientation of the graph.

d) Let u and v be two distinct vertices of the graph G. Prove that
i) A set S of vertices of G is u-v separating if and only if every u-v path has at least one internal vertex belonging to S.
ii) A set F of edges of G is $\mathrm{u}-\mathrm{v}$ separating if and only if every u -v path has at least one edge belonging to F .
5. a) Let G be a graph with n vertices and e edges and let m be the smallest positive integer such that $m \mathrm{Z} \frac{2 \mathrm{e}}{\mathrm{n}}$-Prove that G has a Vertex of degree at least m .
b) Write down the steps involved in Dijkstra's algorithm.
c) Let G_{1} and G_{2} be two plane graphs which are both redrawing's of the same planar graph G. Then prove that $f\left(\mathrm{G}_{1}\right)=\mathrm{f}\left(\mathrm{G}_{2}\right)$.
d) Prove that a simple graph G is Hamiltonian if and only if its closure $\mathrm{C}(\mathrm{G})$ is Hamiltonian.

