Time : Three Hours

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that for any two vertices u and v of a graph G, every $u-v$ walk contains a $u-v$ path.
b) Let G be a simple graph with n vertices and let $\overline{\mathrm{G}}$ be it's compliment. Then Prove that
i) For each vertex v in $G, d_{G}(v)+d_{\bar{G}}(v)=n-1$
ii) Suppose that G has exactly one even vertex. How many odd vertices does $\overline{\mathrm{G}}$ have

OR

c) Prove that Let G be a graph with n vertices. Then the following three statements are equivalent.
i) G is a tree
ii) G is acyclic graph with $n-1$ edges.
iii) G is a connected graph with $\mathrm{n}-1$ edges.
d) Let G be a acyclic graph with n vertices and K connected components. Then Prove that G has $n-K$ edges.

UNIT - II

2. a) Let G be a weighted connected graph in which the weights of the edges are all nonnegative numbers. Let T be a subgraph of G obtained by Kruskal's algorithm. Then prove that T is a minimal spanning tree of graph G .
b) Use Dijkstra's algorithm to find the length of a shortest path between the vertices a and z in the weighted graph.

OR
c) Prove that if G be a graph with n vertices, where $\mathrm{n} \geq 2$. Then G has atleast two vertices which are not cut vertices.
d) Prove that: A connected graph G is Euler if and only if the degree of every vertex is even.
3. a) State and prove Euler's Formula.
b) Let G be a plane graph without loops. If G has a Hamiltonian cycle C and α_{i}, β_{i} then prove that $\sum_{\mathrm{i}}(\mathrm{i}-2)\left(\alpha_{\mathrm{i}}-\beta_{\mathrm{i}}\right)=0$
Where, α_{i} denotes the number of faces of degree i lying inside the cycle C and β_{i} denotes the number of faces of degree i lying outside the cycle C.

OR

c) Let G be a connected plane graph with n vertices, e edges and f faces. Let n^{*}, e^{*} andf* denotes the number of vertices, edges and faces respectively of G^{*}, then prove that $\mathrm{n}^{*}=\mathrm{f}, \mathrm{e}^{*}=\mathrm{e} \operatorname{and} \mathrm{f}^{*}=\mathrm{n}$.
d) Prove that K_{y} and $\mathrm{K}_{\mathrm{z}, 2}$ are Planar.

UNIT - IV

4. a) Define
i) Directed graph.
ii) Weakly connected digraph.
iii) Strongly connected digraph.
iv) Simple digraph.
v) Euler digraph.
b) Prove that: A tournament T is Hamiltonian if and only if it is strongly connected.

OR

c) State and prove Max - Flow Min cut theorem.
d) Prove that A simple graph G is n-connected if and only if given any pair of distinct vertices u and v of G, there are at least n internally disjoint paths from u to v.
5. a) Prove that any tree T with at least two vertices has more than one vertex of degree 1 .
b) Write a short note on Chinese Postman problem.
c) Prove that K_{5} is nonplanar.
d) Prove that an acyclic digraph has atleast one vertex of out degree zero.

