M.Sc.(Mathematics) (C.B.C.S. Pattern) Sem-III

PSCMTHT14-3-Paper-XIV (Optional): Graph Theory

P. Pages: 2

Time: Three Hours

Max. Marks: 100

Notes: 1. Solve all **five** questions.

2. All questions carry equal marks.

UNIT - I

10

10

- 1. a) Prove that for any two vertices u and ν of a graph G, every $u \nu$ walk contains a $u \nu$ path.
 - b) Let G be a simple graph with n vertices and let \bar{G} be it's compliment. Then Prove that
 - i) For each vertex v in G, $d_G(v) + d_{\overline{G}}(v) = n-1$
 - ii) Suppose that G has exactly one even vertex. How many odd vertices does \bar{G} have

OR

- c) Prove that Let G be a graph with n vertices. Then the following three statements are equivalent.
 - i) G is a tree
 - ii) G is acyclic graph with n-1 edges.
 - iii) G is a connected graph with n-1 edges.
- d) Let G be a acyclic graph with n vertices and K connected components. Then Prove that G has n-K edges.

UNIT – II

- 2. a) Let G be a weighted connected graph in which the weights of the edges are all nonnegative numbers. Let T be a subgraph of G obtained by Kruskal's algorithm. Then prove that T is a minimal spanning tree of graph G.
 - b) Use Dijkstra's algorithm to find the length of a shortest path between the vertices a and z in the weighted graph.

OR

- c) Prove that if G be a graph with n vertices, where $n \ge 2$. Then G has at least two vertices which are not cut vertices.
- d) Prove that: A connected graph G is Euler if and only if the degree of every vertex is even. 10

UNIT – III

3.	a)	State and prove Euler's Formula.	10
	b)	Let G be a plane graph without loops. If G has a Hamiltonian cycle C and α_i , β_i then prove that $\sum_i (i-2) (\alpha_i - \beta_i) = 0$	10
		Where, α_i denotes the number of faces of degree i lying inside the cycle C and β_i denotes the number of faces of degree i lying outside the cycle C.	
		OR	
	c)	Let G be a connected plane graph with n vertices, e edges and f faces. Let n^* , e^* and f^* denotes the number of vertices, edges and faces respectively of G^* , then prove that $n^* = f$, $e^* = e$ and $f^* = n$.	10
	d)	Prove that K_y and $K_{z,2}$ are Planar.	10
		$\mathbf{UNIT} - \mathbf{IV}$	
4.	a)	Define i) Directed graph. ii) Weakly connected digraph.	10
		iii) Strongly connected digraph. iv) Simple digraph.	
		v) Euler digraph.	
	b)	Prove that: A tournament T is Hamiltonian if and only if it is strongly connected.	10
		OR	
	c)	State and prove Max – Flow Min cut theorem.	10
	d)	Prove that A simple graph G is n-connected if and only if given any pair of distinct vertices u and ν of G, there are at least n internally disjoint paths from u to ν .	10
5.	a)	Prove that any tree T with at least two vertices has more than one vertex of degree 1.	5
	b)	Write a short note on Chinese Postman problem.	5
	c)	Prove that K_5 is nonplanar.	5
	d)	Prove that an acyclic digraph has atleast one vertex of out degree zero.	5
