Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that in a graph G there is an even number of odd vertices.
b) Define self-complementary graph. Prove that if G is a self - Complementary graph with nvertices then n is either $4 t$ or $4 t+1$ for some integer t.

OR

c) Given any two vertices u and v of a graph G, every $u-v$ walk contains a u-v path.
d) If T is a tree with n -vertices then it has precisely $\mathrm{n}-1$ edges.

UNIT - II

2. a) Find minimal spanning tree of the graph by Prim's Algorithm.

b) Prove that if G is a graph in which the degree of every vertex is at least two then G contains a cycle.

OR

c) A connected graph G is Euler if and only if the degree of every vertex is even.
d) Use Fleury's algorithm to construct an Euler circuit for the graph.

UNIT - III

3. a) Prove that $K_{3,3}$ is non-planar.
b) Let G be a plane graph with n vertices, e edges, f faces and k connected components, then $\mathrm{n}-\mathrm{e}+\mathrm{f}=\mathrm{k}+1$.

OR

c) Show that if a planar graph G of order n and size m has r regions and k components, then $\mathrm{n}-\mathrm{m}+\mathrm{r}=\mathrm{k}+1$.
d) Prove that k_{4} and $\mathrm{K}_{2,2}$ are planar.

UNIT - IV

4. a) State and prove first theorem of Digraph theory.
b) Let D be a weakly connected digraph with atleast two vertices. Then D has a directed

Euler trail if and only if D has two vertices such that.

$$
\begin{aligned}
& \operatorname{od}(u)=\operatorname{id}(u)+1 \text { and } \\
& \operatorname{id}(v)=\operatorname{od}(v)+1
\end{aligned}
$$

and for all other vertices w of D.

OR

c) Find the orientation of the graph.

d) Define
i) Directed graph.
ii) Simple digraph.
iii) Euler digraph.
iv) Weakly connected digraph
v) Strongly connected diagraph.
5. a) Prove that if an edge e is not part of any cycle in G then e is a bridge.
b) Write a note on Kruskal's Algorithm.
c) Let G_{1} and G_{2} be two plane graphs which are both redrawings of the same planar graph G. Then $f\left(G_{1}\right)=f\left(G_{2}\right)$.
d) A digraph G is an Eulerian digraph if and only if G is connected and is balanced.

