Notes : 1. Solve all the five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that any tensor of second order may be expressed as sum of a symmetric \& skew symmetric tensor.
b) Show that:
i) $[\mathrm{ij}, \mathrm{k}]=[\mathrm{ji}, \mathrm{k}]$
ii) $\left\{\begin{array}{l}i \\ j k\end{array}\right\}=\left\{\begin{array}{l}\mathrm{i} \\ \mathrm{kj}\end{array}\right\}$
iii) $\{\mathrm{i} j\}=\frac{\partial}{\partial \mathrm{xj}} \log \sqrt{\mathrm{g}}$

OR

c) Let A^{r}, B^{r} be arbitrary contravariant vectors \& $A^{r} B^{s}$ be an invariant then show that $Q_{r s}$ is a component of covariant tensor of order 2 .
d) Prove that the Christoffel symbols of second kind are not tensor.

UNIT - II

2. a) Derive the relation between Newton's gravitation potential $\psi \& g_{44}$.
b) Derive the energy momentum tensor of a perfect fluid in the form.

$$
T_{j}^{i}=(\rho+p) u^{i} u^{j}-P^{i j}
$$

OR

c) Derive the relation,

$$
\nabla^{2} \psi=4 \pi \mathrm{G} \rho, \text { where } \mathrm{g}=1
$$

d) Explain the another implication of co-variance with respect to
i) Geometry of special relativity.
ii) The test particle trajectory.

UNIT - III

3. a) Obtain the equation of planetary orbit, $\mu^{\prime \prime}+\mu=3 \mu^{2} \mathrm{M}+\frac{\mathrm{M}}{\mathrm{h}^{2}}$
b) State one of the classic test of general relativity \& explain it.

OR

c) Show that every solution of field equation corresponding to the field is static.
d) Obtain the Schwarzschild's solution in isotropic coordinate system.

UNIT - IV

4. a) Obtain the Einstein's field equation

$$
\mathrm{R}_{\mathrm{ij}}=\lambda \mathrm{g}_{\mathrm{ij}}
$$

from the Poisson's equation.
b) Derive the line element of the interior Schwarzschild solution.

OR

c) Derive the gravitational field equation for nonempty space.
d) Derive the linearized field equation.
5. a) Show that

$$
A_{i}^{i}=\frac{1}{\sqrt{g}} \frac{\partial\left(A^{i} \sqrt{g}\right)}{\partial x^{i}}
$$

b) Explain the principle of covariance.
c) State the Birkhoff's theorem in two forms.
d) Discuss the associated Weyl's solution.

