S.Y. M.Sc. (Electronics) (CBCS Pattern) Third Semester Old+CBCS

ELE303 / PSELT303.1 / PSELT303-DSE-1 - Digital Signal Processing Paper-III

P. Pages: 2 Time: Three Hours			Hours * 3 5 5 8 *	GUG/W/18/11255 Max. Marks : 80	
	Note	es:	 All questions are compulsory and carry equal marks. Draw neat and labelled diagrams wherever necessary. Use of log table/calculator is allowed. 		
1.		Eit	ther		
	a)	What are different types of operations performed on signals. Explain with suitable examples.			
	b)	De	efine:	8	
		i)	Static / dynamic system		
		ii)	Time variant / time invariant		
		iii)) Casual / Non-casual system		
		iv)) Stable / Unstable system		
			OR		
	c)	Per	erform the convolution sum using mathematical equation of convolution $h(n) = \{1, 2, 1, -1\}$ $x(n) = \{1, 2, 3, 1\}$	on. 8	
		Als	so sketch the resultant signal.		
	d)	Dis	iscuss the basic sequences and sequence operation in discrete time sig	nals. 8	
2.		Eit	ther		
	a)	Fin	nd the Z-transform of second order recursive filter whose impulse res $h(n) = \left\{ \begin{array}{ll} r^n \sin \left[\omega_0 n \right] & n \geq 0 \\ 0 & \text{elsewhere} \end{array} \right.$	ponse is: 8	
	b)	Fin	nd the Z-transform and RoC of the sequence $x[n] = r_1^n u[n] + r_2^n u[-n]$	-1].	
			OR		
	c)	Dis	iscuss the properties of region of convergence RoC.	8	
	d)	Plo	ot Pole/zero pattern of the following Z-transform equation $X[z] = \frac{z}{3} + \frac{1}{3} + \frac{z^{-1}}{3}.$	8	

- **3.** Either
 - a) Design low pass filter of length M=61 with pass band edge frequency $f_p=0.1$ and stopband edge frequency $f_S=0.15$.
- 8

8

b) Design bandpass filter of length M=32 with passband edge frequencies $f_{p1}=0.2$ and $f_{p2}=0.35$ and stopband edge frequencies $f_{s1}=0.1$ and $f_{\dot{s}2}=0.425$.

OR

c) Discuss the process of design of IIR filters from analog filters.

8

Convert the analog bandpass filter with system function $H_a(s) = \frac{1}{(s+0.1)^2 + 9}$ into a digital IIR filter by use of backward difference for the derivative.

8

- **4.** Either
 - a) Explain CPU, ALU and Accumulator of TMS320C54X family.

8

b) Explain the echo-effect introduced in music.

8

OR

c) Draw the architectural block diagram of Motorola DSP 56000 family. Explain ALU and memory.

8

8

d) Explain various types of DSP processors with examples.

5. a) What are different test signals. Explain with suitable diagrams.

4

b) Determine the casual signal x(n) having the z-transform

4

 $X(z) = \frac{1}{(1+z^{-1}) (1-z^{-1})^2}$

4

c) Compare the digital FIR and IIR filters.

4

d) Give the difference between DSP processors and general purpose processor.

•
