F.Y. M.Sc. (Physics)(with Credits)-Regular-Semester 2012 Sem II (Old)

0142 - Paper III-Statistical Physics

P. Pages: 2 GUG/S/18/5786 Time: Three Hours Max. Marks: 80 1. Either Define Microcanonical ensemble and derive the expression for the entropy of an perfect 8 a) gas in microcanonical ensemble. State the postulates of classical and quantum statistical mechanics. 8 b) OR Explain the concept of microstate and macrostate. Calculate the number of microstate, 8 e) macrostate and thermodynamic probability for distribution of three distinguishable particles in two compartments of equal size. Obtain an expression for relative fluctuation of energy in canonical ensemble. f) 8 2. Either 8 a) Discuss the specific heat of liquid He⁴₂ by comparing with that of ideal Bose system. Define mean occupation number. Obtain an expression for mean occupation number for 8 b) bosons in BE statistics. OR Compare the basic postulates of B.E. and F.D. statistics. Hence, comment about the e) 8 probabilities of particles coming together according to B.E. & F.D. statistics. Obtain an expression for thermodynamical function of total energy, specific heat at 8 f) constant volume and entropy of ideal Bose gas at temperature less than Bose temperature. **3.** Either Discuss the behaviour of ideal fermi gas below fermi temperature. a) 8 What are Mayer F- functions. Obtain canonical partition function for classical real gas in 8 b) terms of cluster integral. OR Apply ideal fermi gas model to free electron gas in metal for the determination of T_E of 8 e) electron. f) Show that the measure of degeneracy of ideal fermi system is given by 8 $Z = \frac{1}{D} = \frac{\rho}{g} \left(\frac{h^2}{2\pi m kT} \right)^{3/2}$

4.		Eitl	ner	
	a)	Exp	plain Landau theory of phase transition.	8
	b)	Wh	at is Brownian motion? Explain Langevin theory of Brownian motion of particles.	8
			OR	
e) Explain Fluctuation- Dissipation theorem. Derive an expression for the damf) Obtain Fokker- Planck equation for Brownian motion.			plain Fluctuation- Dissipation theorem. Derive an expression for the damping constant.	8
			ain Fokker- Planck equation for Brownian motion.	8
5.	Attempt all the following questions.		empt all the following questions.	4
		a)	Explain the terms.	
			i) Phase space.	
			ii) Stationary ensemble.	
		b)	Explain liquid helium as bosons in brief.	4
		c)	Explain Fermi energy and fermi temperature.	4
		d)	What is phase transition. Explain how two phases are in equilibrium.	4

2