M.Sc.F.Y. (Physics)(with Credits)-Regular-Semester 2012 Sem II

0140 - Paper-I : Quantum Mechanics-I
P. Pages : 2

GUG/S/18/5788
Time: Three Hours

EITHER

1. a) Derive time independent Schrodinger equation. Is this equation relativistically invariant? Explain.
b) Explain the physical interpretation of wave function \& show that the wave function Ψ leads to continuity equation.

OR

e) What is the importance of normalized wave function? How will you normalized a function $\Psi=\mathrm{a} \exp \frac{1}{\hbar}(\mathrm{p}, \mathrm{x})$ using Dirac Delta normalization.
f) i) Derive Schrodinger equation in momentum representation.
ii) Explain the quantum mechanical concept of expectation value.

EITHER

2. a) State and explain uncertainty principle using operator $\langle\mathrm{A}\rangle$.
b) State and prove Schwarz inequality.

OR

e) How will you express wave function and eigen value in matrix mechanics.
f) Outline Dirac's bra and Ket notation.
g) Show that, in unitary transformation, the Hermitian nature of an operator are preserved.

EITHER
3. a) Explain the role of L^{2} operator in central force problem.
b) Obtain expression for L^{2} operator in spherical polar co-ordinates.

OR

e) Obtain solution of Schrodinger equation for square well potential by operator method.
f) Find the solution of radial equation for Hydrogen atom.

EITHER

4. a) State the commutation relation obeyed by the components of angular momentum and express them in vector notation.
b) What are Clebsch-Gordan coefficient? Explain their significance.

OR

e) Consider J_{1} and J_{2} are two independent angular momenta, explain how they add together to obtain an angular momenta for the system.
f) What are Pauli matrices?

Show that
i) $\quad\left[\sigma_{x}, \sigma_{y}\right]=2 \mathrm{i} \sigma_{z}$
ii) $\quad\left[\sigma_{y}, \sigma_{z}\right]=2 \mathrm{i} \sigma_{x}$
iii) $\left[\sigma_{z}, \sigma_{x}\right]=2 i \sigma_{y}$
5. All questions are compulsory.
a) Give the inadequacy of classical mechanics.
b) State fundamental commutative bracket.
c) Explain step function \& step barrier potential by boundary condition.
d) i) Derive matrix for J_{2} for $\mathrm{j}=\frac{3}{2}$
ii) Prove that $\left[\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{-}\right]=\hbar \mathrm{J}$

