M.Sc. F.Y. (Physics) Sem-II 0140 - Quantum Mechanics-I Paper-I

P. Pages : 2 Time : Three Hours			GUG/S/19/2238 Max. Marks : 80	
	Note	: All questions are compulsory and carry equal marks.		
1.		Either :		
	a)	"A wave packet contains all the relevant information of a moving particle" -	- Comment. 4	
	b)	Discuss the concept of expectation value. Derive the expression of expectation momentum.	ion value of 6	
	c)	Prove Ehrenfest's theorem. Explain its importance.	6	
		OR		
	e)	Deduce the equation of motion in momentum representation.	6	
	f)	Show the probability density in the momentum representation is $\left \varphi(p,t) \right ^2$.	6	
	g)	State the admissibility of wave function.	4	
2.		Either :		
	a)	Show that : Every eigen value of a Hermitian operator is real.	4	
	b)	Derive matrices for representing state vectors and operators, in an orthonorr	nal basis. 8	
	c)	What are fundamental commutation relations? Derive using co-ordinate rep	resentation. 4	
		OR		
	e)	Explain how a matrix representation changes during change in basis.	6	
	f)	Explain Schrodinger picture. Obtain the time derivative of the expectation v observable.	value of an 8	
	g)	What is fundamental expansion postulate?	2	
3.		Either :		
	a)	Discuss the parity of wave function.	4	
	b)	What is parity operator? What are its eigen values.	4	
	c)	Solve the eigen value equation of L^2 .	8	

GUG/S/19/2238

4. Either:

of spherical harmonics $Y_{\ell}^{\theta}(\theta, \phi)$ is $(-1)^{\ell}$.

e)

f)

e)

5.

i) $S_x^2 S_y S_z^2$

Find the matrix elements of J^2 and J_z operators for $j = \frac{1}{2}$ and 1. Also find the matrix 8 a) elements J_x and J_y for $j = \frac{1}{2}$.

What do you mean by parity operator. Define even and odd parity. Shows that the parity

Calculate the eigen function and eigen value of linear simple harmonic oscillator.

10

6

8

Explain the addition of two independent angular momenta J_1 and J_2 . What is C. G. 8 b) Coefficient.

OR

Using Pauli's spin matrix representation reduce each of the operator.

ii) $S_x^2 S_y^2 S_z^2$ iv) $S_x S_y S_z^3$ iii) $S_x S_y S_z$ The Vector J gives the sum of angular momenta $J_1 \& J_2$, prove that : f) 8 i) $\left[J_{x}, J_{y}\right] = 2iJ_{z}$ ii) $[J_y, J_z] = 2iJ_x$ iii) $[J_z, J_x] = 2i J_y$ Is $J_1 - J_2$ an angular momentum? All questions are compulsory. What is momentum eigen function? How will you normalize the momentum eigen a) 4 function using Dirac – delta normalization method? Explain Schwarz inequality. 4 b) Explain importance of L^2 operators in solving central force problem. 4 c) Show that J_+ and J_- are non Hermitian operators. 4 d)
