Note: All questions are compulsory and carry equal marks.
1.

Either :
a) "A wave packet contains all the relevant information of a moving particle" - Comment.
b) Discuss the concept of expectation value. Derive the expression of expectation value of momentum.
c) Prove Ehrenfest's theorem. Explain its importance.

OR

e) Deduce the equation of motion in momentum representation.
f) Show the probability density in the momentum representation is $|\phi(\mathrm{p}, \mathrm{t})|^{2}$.
g) State the admissibility of wave function.
2. Either :
a) Show that : Every eigen value of a Hermitian operator is real.
b) Derive matrices for representing state vectors and operators, in an orthonormal basis.
c) What are fundamental commutation relations? Derive using co-ordinate representation.

OR

e) Explain how a matrix representation changes during change in basis.
f) Explain Schrodinger picture. Obtain the time derivative of the expectation value of an observable.
g) What is fundamental expansion postulate?
3. Either :
a) Discuss the parity of wave function.
b) What is parity operator? What are its eigen values.
c) Solve the eigen value equation of L^{2}.

OR

e) What do you mean by parity operator. Define even and odd parity. Shows that the parity of spherical harmonics $\mathrm{Y}_{\ell}^{\theta}(\theta, \phi)$ is $(-1)^{\ell}$.
f) Calculate the eigen function and eigen value of linear simple harmonic oscillator.
4. Either :
a) Find the matrix elements of J^{2} and J_{Z} operators for $\mathrm{j}=1 / 2$ and 1 . Also find the matrix elements J_{x} and J_{y} for $\mathrm{j}=1 / 2$.
b) Explain the addition of two independent angular momenta J_{1} and J_{2}. What is C. G. Coefficient.

OR

e) Using Pauli's spin matrix representation reduce each of the operator.
i) $S_{x}^{2} S_{y} S_{z}^{2}$
ii) $S_{x}^{2} S_{y}^{2} S_{z}^{2}$
iii) $S_{x} S_{y} S_{z}$
iv) $S_{x} S_{y} S_{z}^{3}$
f) The Vector \mathbf{J} gives the sum of angular momenta $\mathrm{J}_{1} \& \mathrm{~J}_{2}$, prove that :
i) $\left[J_{x}, J_{y}\right]=2 i J_{z}$
ii) $\left[\mathrm{J}_{\mathrm{y}}, \mathrm{J}_{\mathrm{z}}\right]=2 \mathrm{iJ}_{\mathrm{x}}$
iii) $\left[\mathrm{J}_{\mathrm{z}}, \mathrm{J}_{\mathrm{x}}\right]=2 \mathrm{iJ}_{\mathrm{y}}$

Is $\mathrm{J}_{1}-\mathrm{J}_{2}$ an angular momentum?
5. All questions are compulsory.
a) What is momentum eigen function? How will you normalize the momentum eigen function using Dirac - delta normalization method?
b) Explain Schwarz inequality.
c) Explain importance of L^{2} operators in solving central force problem.
d) Show that \mathbf{J}_{+}and J_{-}are non Hermitian operators.

