M.Sc. - I (Mathematics)(with Credits)-Regular-Semester 2012 Sem II (Old) 0174 - (Optional) Paper-VI : Mathematical Methods

P. Pages : 2 Time : Three Hours			GUG/S/18/5766 Max. Marks : 100
	Not	es : 1. Solve all five questions. 2. Each questions carries equal marks.	
		UNIT - I	
1.	a)	If $f(x) \in C[a, b]$ where $0 < a < b < \infty$ then prove that $\int_{a}^{b} f(x) \sin(\lambda t) dt \rightarrow 0$ as	$\lambda \rightarrow \infty$.
	b)	Find the Fourier sine and cosine transform of $f(t) = \frac{e^{-at}}{t}$.	10
		OR	
	c)	Find $F_C\left[e^{-x^2};\xi\right]$?	10
	d)	Prove that $F[f.g; \xi] = F(\xi) \cdot G(\xi)$ where $F(\xi)$ and $G(\xi)$ denote the Fourier transformed g respectively.	unsform of f 10
		UNIT - II	
2.	a)	If $L[f(t),P] = \overline{f}(p)$ and $L[g(t),P] = \overline{g}(p)$ then prove that $L[f*g,p] = \overline{f}(p)$	$\cdot \overline{g}(p)$ 10
	b)	State & prove existence theorem for Laplace transform.	10
		OR	
	c)	If $L[f(t)] = \overline{F}(p)$ then prove that $L[t^n \cdot F(t)] = (-1)^n \cdot \frac{d^n}{dp^n} \overline{F}(p), n = 1, 2, 3, .$	
	d)	Solve by Laplace transform y''-4y'+3y=f(x), $y(0)=1$, $y'(0)=0$	10
		UNIT - III	
3.	a)	Find the Finite Fourier sine transform of cos(ax).	10
	b)	$2x = 2^2 x$	10

b) Solve
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < 4$, $t > 0$

subject to condition u(0,t) = u(4,t) = 0 u(x,0) = 2x.

OR

c) Express the function

$$f(x) = 1$$
, for $|x| \le 1$
= 0, for $|x| > 1$

as a Fourier integral and hence evaluate.

d) Prove that :

$$F_{S}[x(a-x),n] = \frac{2a^{3}}{n^{3}\pi^{3}} \Big[1 + (-1)^{n+1} \Big]$$

UNIT - IV

4. a) Find the Hankel finite transform for x^2 if $x J_0(\xi_n \cdot x)$ is the Kernel of the transform. 10

b) Prove that

$$h_{1}, \nu \left[x^{\nu}; n \right] = \frac{a^{\nu+1}}{\xi_{n}} \cdot J_{\nu+1}(\xi_{n} \cdot a).$$
10

OR

c) Find the Hankel transform of

$$f(x) = a^{2} - x^{2}, \ 0 < x < a, \ n = 0$$

$$= 0, \ x > a, \ n = 0$$
d) Define Mellin transform and calculate
i) $M[e^{-\alpha x}], \alpha > 0$
ii) $M[F(ax)]$
a) If λ is constant, then show that
 $F[e^{i\lambda t} \cdot f(t), \xi] = F[f(t); \xi + \lambda]$
b) $L[\frac{\sin at}{t}]$
5

d) Find the Hankel transform of
$$\frac{1}{x}$$
 then apply the inversion formula to get original function. 5

Find $F_s[1; n]$.

5.

c)

10

5