M.SC. - I (Mathematics) Second Semester Old+CBCS

0172 / PSCMTHT09 - Mathematics Paper-IV
 (Classical Mechanics)

P. Pages : 2

GUG/W/18/11214
Time : Three Hours
Max. Marks : 100

Notes: 1. Solve all five question.
2. Each question carries equal marks.

UNIT - I

1. a) Show that Hamilton's principle is a necessary and sufficient condition for Lagrange's equation.
b) By the minimum surface of revolution obtain the equation of catenary.

OR

c) Derive Lagrangian equation from Hamilton principle.
d) Discuss the Brachistochrone problem.

UNIT - II

2. a) If the constraint are independent of time for the equation -
$\overline{\mathrm{r}}_{\mathrm{i}}=\overline{\mathrm{r}}_{\mathrm{i}}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots . \mathrm{q}_{\mathrm{n}}, \mathrm{t}\right)$
do not involve time t explicitly then show that $\Delta \int 2 \mathrm{Tdt}=0$
b) Discuss the principle at least action.

OR

c) Discuss the Routh's procedure and show that the nonignorable coordinate obey the Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{R}}{\partial \dot{\mathrm{q}}_{\mathrm{i}}}\right)-\frac{\partial \mathrm{R}}{\partial \mathrm{q}_{\mathrm{i}}}=0 \quad \mathrm{i}=1,2, \ldots \ldots
$$

d) Obtain the canonical equations of Hamilton.

UNIT - III

3. a) Obtain the equation of the canonical transformation.
b) If $f=f_{1}(q, Q, t)$ and $f=f_{2}(q, P, t)$ are generating functions of canonical transformation then prove that -
i) $\mathrm{K}=\mathrm{H}+\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{t}}$ and
ii) $\mathrm{K}=\mathrm{H}+\frac{\partial \mathrm{f}_{2}}{\partial \mathrm{t}}$

OR

c) Prove that the value of the Poisson bracket $[\mathrm{Q}, \mathrm{P}]$ implies the sympletic condition.
d) Explain the sympletic approach to canonical transformation and obtain necessary condition, $\mathrm{MJ} \tilde{\mathrm{M}}=\mathrm{J}$.

UNIT - IV

4. a) Show that the density of the system in the neighborhood of some given system in phase space remains constant in time.
i.e. $\frac{\partial \mathrm{D}}{\partial \mathrm{t}}=0$ or $\frac{\partial \mathrm{D}}{\partial \mathrm{t}}=-[\mathrm{D}, \mathrm{H}]$.
b) Explain the angular momentum Poisson bracket relation.

OR

c) Prove that, the generating function G corresponding to an infinitesimal rotation of the mechanical system about an axis denoted by the unit vector n is given by $G=$ L.n where L is the total angular momentum of the system.
d) In a symmetry group of mechanical system obtain the identities
$\left[L_{i}, L_{j}\right]=\epsilon_{i j k} \cdot L_{k}$
$\left[D_{i}, L_{j}\right]=\epsilon_{i j k} \cdot D_{k}$
$\left[D_{i}, D_{j}\right]=\epsilon_{i j k} \cdot L_{k}$
5. a) Prove that the shortest distance between the two point in a plane is a straight line.
b) If the generalized co-ordinate does not appear in H , then prove that the corresponding momentum is conserved.
c) Show directly that the transformation $\mathrm{Q}=\log (1 / \mathrm{q} \sin \mathrm{p}), \mathrm{p}=\mathrm{q} \cot \mathrm{p}$ is canonical.
d) Prove that the Poisson bracket of constant of the motion is itself a constant of the motion even when the constant depends on time explicitly.

