Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) If R is a unique factorization Domain, then prove that the factorization of any element in R as a finite product of irreducible factors is unique to with in order and unit factors.
b) Let R be unique factorization domain and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Then prove that there exists a greatest common divisor of a and b that is uniquely determined to within an arbitrary unit factor.

OR

c) Show that:

Every principal ideal domains is a unique factorization domain, but a unique factorization domain is not necessarily a principal ideal domain.
d) If $f(X), g(X) \in R[X]$, then prove that $C\left(f_{g}\right)=C(f) C(g)$. In particular the product of two primitive polynomials is primitive.

UNIT - II

2. a) Let $F(X)=a_{0}+a_{1} X+\ldots \ldots . .+a_{n} X^{n} \in z[x]$ If there is a prime P such that
$p^{2} \nmid a_{0}, p / a_{0}, p / a_{1}, \ldots \ldots . ., p / a_{n-1}, p / \nmid a_{n}$ then prove that $F(x)$ is irreducible over Q.
b) Let E and F be fields and let $\sigma: \mathrm{F} \rightarrow \mathrm{E}$ be an embedding of F into E . Then prove that there exists a field K such that F is a sub field of K and σ can be extended an isomorphism of K on to E .

OR

c) Let E be an extension field of F and let $u \in E$ be algebraic over F. Let $p(x) \in F[x]$ be a polynomial of the least degree such that $\mathrm{P}(\mathrm{u})=0$. Then prove that
i) $\mathrm{P}(\mathrm{x})$ is irreducible over F .
ii) If $g(X) \in F[x]$ is such that $g(u)=0$, then $P(x) / g(x)$
iii) There is exactly one monic polynomial $\mathrm{P}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ of least degree such that $\mathrm{p}(\mathrm{u})=0$.
d) Let K be a Spliting field of the polynomial $f(x) \in F[x]$ over a field F. If E is another spliting field of $f(x)$ over F. Then prove that there exist an isomorphism $\sigma: E \rightarrow K$ that is identity on F .

UNIT - III

3. a) Show that any finite field F with p^{n} elements is the spliting field of $x^{p^{n}}-x \in F_{p}[x]$. consequently any two finite fields with p^{n} elements are isomorphic.
b) Let E be an extension of a field F , and let $\alpha \in \mathrm{E}$ be algebraic over F . Then prove that α is separable over F iff $F(\alpha)$ is a separable extension of F.

OR

c) If $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ has r distinct roots in its splitting field E over F , then prove that the Galois group $G(E / F)$ of $F(x)$ is a subgroup of the symmetric group S_{r}.
d) Show that every polynomial $\mathrm{f}(\mathrm{x}) \in \mathrm{C}[\mathrm{x}]$ factors into linear factors in $\mathrm{C}[\mathrm{x}]$.

UNIT - IV

4. a) Let F be a field and let U be a finite subgroup of the multiplicative group $\mathrm{F}^{*}=\mathrm{F}-\{\mathrm{O}\}$.

Then prove that U is cyclic. In particular the roots of $x^{n}-1 \in F[x]$ form a cyclic group.
b) Let E be a finite extension of F. Suppose $f: G \rightarrow E^{*}, E^{*}=E-\{O\}$ has the property that $\mathrm{f}(\sigma \mathrm{n})=\sigma(\mathrm{f}(\eta)) \cdot \mathrm{f}(\sigma)$ for all $\sigma, \mathrm{n} \in \mathrm{G}$. Then prove that there exists $\alpha \in \mathrm{E}^{*}$ such that $\mathrm{f}(\sigma)=\sigma\left(\alpha^{-1}\right) \alpha$ for all $\sigma \in \mathrm{G}$.

OR

c) Let $F(x)$ be a polynomial over a field F with no multiple roots. Then prove that $f(x)$ is irreducible over F if and only if the Galois group G of $\mathrm{F}(\mathrm{x})$ is isomorphic to a transitive permutation group.
d) Let $f(x) \in Q[x]$ be a monic irreducible polynomial over Q of degree P, where P is prime.

If $F(x)$ has exactly two non real roots in C. then prove that the Galois group of $f(x)$ is isomorphic to S_{P}.
5. a) Show that every Euclidean domain is a principal ideal domain.
b) Let $\mathrm{F}=\mathrm{z} /(2)$. Then show that the spliting field of $\mathrm{x}^{3}+\mathrm{x}^{2}+1 \in \mathrm{~F}[\mathrm{x}]$ is a finite field with eight elements.
c) Let F be field of characteristic $\neq 2$ Let $x^{2}-a \in F[x]$ be an irreducible polynomial over F. Then prove that its Galois group is of order 2.
d) Show that the Galois group of $x^{4}+x^{2}+1$ is the same as that of $x^{6}-1$ and is of order 2 .

