2MSC1 - Paper-I : Theory of Computation and System Programming

P. Pages : 2

GUG/S/19/2868
Time : Three Hours

Notes : 1. All questions are compulsory and carry equal marks.
2. Draw neat and labelled diagram wherever necessary.
3. Avoid vague answers.

1. Either.
a) Let $G=\left(\left\{A_{1}, A_{2}, A_{3}\right\},\{a, b\}, P \cdot A_{1}\right)$ Find GMF equivalent to the following CFG.

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{3} \mathrm{~A}_{1} \mid \mathrm{b} \\
& \mathrm{~A}_{3} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{2} \mid \mathrm{a}
\end{aligned}
$$

b) Convert the given Regular expression into equivalent DFA.
i) $10+(0+11) 0^{*} 1$.
ii) $01\left[\left((10)^{*}+111\right)^{*}+0\right]^{*} 1$.

OR
c) The grammar G is given as $S \rightarrow$ sbs $\mid a$, show that G in ambiguous.
d) Give the transition table for the NFA given in fig far sming $\mathrm{x}=0100$.

2. Either.
a) Design a TM to recognize the language $L=\left\{0^{n} 1^{n} / \mathrm{n} \geq 1\right\}$.
b) Prove that $L=\left\{a^{i} b^{i} c^{i} \mid i \geq 1\right\}$ is not CFL.

OR

c) Design a PDA for accepting
$\mathrm{L}=\left\{\mathrm{WCW}^{\mathrm{R}} \mid \mathrm{w}\right.$ is in $\left.(0+1)^{*}\right\}$.
d) Design turning machine to compute n^{2}.
3. Either.
a) Write a short note on:
i) Compiling.
ii) Loading.
b) Explain kernel modules Vs Application in detail.

OR

c) Explain running modules in detail.
d) Discuss the security issues for device drivers.
4. Either.
a) Explain CPU architecture of 8086 . 8
b) Discus the overview of compilation process.

OR

c) Write a short note on:
i) Linking.
ii) Functions.
d) Differentiate between Relocation and program re-location.
5. Solve all the questions.
a) Write a short note on finite Automata. 4
b) Write a note on context free languages. 4
c) Write a note on Interaction and shutdown. 4
d) Write a note on address computation. 4

