M.Sc. (Physics) (C.B.C.S. Pattern) Sem-I

PSCPHYT01 - Core-I - Paper-I: Mathematical Physics					
P. Pages: 2 Time: Three Hours Notes: 1.			* 3 1 1 9 *	GUG/S/19/11179 Max. Marks : 80	
		s: 1.	All questions are compulsory.		
1.		Either			
	a)	Prove the	nat $(y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is nal.	s both solenoidal and 8	
	b)		Fourier series for $0 - \pi < x < 0$ $x 0 < x < \pi$	8	
			OR		
	e)		e and cosine transform of $(1+x/a) -a < x < 0$ (1-x/a) 0 < x < a 0 otherwise	8	
			0 otherwise		
	f)		d motion is given by $\overline{v}(y\sin z - \sin x)i + (x\sin z + dyz)j + (x\sin$	$(xy\cos z + y^2)k$ is the 8	
2.		Either			
	a)	If there rectangu	be an entity represented by multi suffix set a_{ij} relatively to alar axes and if a_{ij} b_i is a vector, where b_i is any arbitrary vector of order two.		
	b)	i) gra	$\operatorname{ad}(\overrightarrow{f} \cdot \overrightarrow{g}) = \overrightarrow{f} \times \operatorname{curl} \overrightarrow{g} + \overrightarrow{g} \times \operatorname{curl} \overrightarrow{f} + \overrightarrow{f} \cdot \Delta \overrightarrow{g} + \overrightarrow{g} \cdot \Delta \overrightarrow{f}$	10	
		ii) cur	$\operatorname{rl}(\overrightarrow{f} \times \overrightarrow{g}) = \overrightarrow{f} \operatorname{div} \overrightarrow{g} - \overrightarrow{g} \cdot \operatorname{div} \overrightarrow{f} + \overrightarrow{g} \cdot \Delta \overrightarrow{f} - \overrightarrow{f} \cdot \Delta \overrightarrow{g}$ \mathbf{OR}		
	e)	If a _{ijkl} of order	is a tensor of order m then set obtained an identifying any tw (m-2).	vo suffixes is a tensor 6	
	f)		nat if a_{ijkl} is symmetric (skew symmetric) in any two suf in the same suffix.	fixes, then so is also 6	
	g)	What is	mixed tensor of second rank. Prove that δ_q^p is a mixed tensor	of the second rank.	
3.		Either			
	a)	Find eig $A = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$	en value of A^3 if $ \begin{bmatrix} 1 & 4 \\ 2 & 6 \\ 0 & 1 \end{bmatrix} $	6	

b) Satisfy the Cayley-Hamilton theorem and find A^{-1} of the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 0 & 3 \\ 3 & 1 & -2 \end{bmatrix}$

OR

8

8

e) Find the eigen value & eigen vector of matrix

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$

f) Diagonalise A = $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

4. Either

a) Solve the differential equations.

i)
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 6e^{3x} + 7e^{-2x} - \log 2$$
 ii) $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = e^x \cosh 2x$

b) $3x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$

Find the solution in generalized series form about x = 0 of differential equation.

OR

e) Prove that

i)
$$x J_n' = n J_n - x J_{n+1}$$

ii)
$$x J_n' = -n J_n + x J_{n-1}$$

f) Find the power series solution of 8

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$

5. Answer the following.

a) Find the Fourier expansion of time period of
$$2\pi$$
, where $f(x) = x^2$, $-\pi < x < \pi$.

b) Prove that
$$\in_{i\ell_m} \in_{jem} = 2\delta_{ij}$$

c) Find
$$A^{-1}$$
 of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 1 & 2 \end{bmatrix}$

d) Solve differential equation
$$\sin x \frac{dy}{dx} + 2y = \tan^3(x/2)$$
