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 Notes : 1. Solve all five questions. 

 2. All questions carry equal marks. 

  
 

 

  UNIT - I 

 

 

1. a) Let A, B  F (X). Then for all [0, 1]  prove that  

i) A B iff A B    

ii) A B iff A B+ +   
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 b) Let f : X Y→  be an arbitrary crisp function. Then prove that for any A  F (X) and all 

[0, 1]  the following properties of f fuzzified by the extension principle hold. 

i) [f (A)] f ( A)+ +=  ii) [f (A)] f ( A)   

 

10 

  OR 

 

 

 c) Prove that every fuzzy complement has at most one equilibrium. 

 

10 

 d) Let C be a function from [0, 1] to [0, 1]. Then prove that C is a fuzzy complement iff there 

exists a continuous function f from [0, 1] to R such that f(1) = 0, f is strictly decreasing 

and 1c(a) f (f (0) f (a))−= −  for all a [0, 1] . 
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  UNIT - II 

 

 

2. a) Let A  F (R). Then prove that A is a fuzzy number if and only if there exists a closed 

interval [a, b]    such that  

1 for x [a, b]

A(x) (x) for x ( ,a)

r(x) for x (b, )




=  −
  

l  

where l is a function from ( ,a)−  to [0, 1] that is monotonic increasing, continuous from 

the right and such that (x) 0=l  for 1x ( , w ) − , r is a function from (b, )  to [0, 1] that 

is monotonic decreasing, continuous from the left and such that r(x) = 0 for 2x (w , )  . 
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 b) Let MIN and MAX be binary operations on R defined by  

 
z min (x, y)

MIN(A, B) (z) sup min A(x), B(y)
=

=  and  

 
z max (x, y)

MAX(A, B) (z) sup min A(x), B(y)
=

=  for all z R  respectively. Then prove 

that for any A, B R  MIN [A, MAX(A, B)] = A. 
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  OR 

 

 

 c) Let MIN and MAX be binary operations on R defined by  

 
z min (x, y)

MIN(A, B) (z) sup min A(x), B(y)
=

=  and  

 
z max (x, y)

MAX(A, B) (z) sup min A(x), B(y)
=

=  for all z R  respectively. Then prove 

that for any A, B, C R  

MIN [A, MAX (B, C)] = MAX [MIN (A, B) , MIN (A, C)] 
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 d) Find the solution for the equation A X B =  where A and B are triangular shape fuzzy 

numbers given by - 

0 for x 3 and x 5

A(x) x 3 for 3 x 4

5 x for 4 x 5

 


= −  
 −  

 

0 for x 12 and x 32

B(x) (x 12) / 8 for 12 x 20

(32 x) /12 for 20 x 32

 


= −  
 −  
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  UNIT - III 

 

 

3. a) Write four fundamental concepts associated with fuzzy partial orderings relations and 

further write the properties of every partial ordering relations. 
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 b) 
Prove that for any fuzzy relation R on X2, the fuzzy relation (n)

T(i)

n 1

R R


=

=  is the  

i-transitive closure of R. 

 

10 

  OR 

 

 

 c) Let R be a reflexive fuzzy relation on X2, where | X | n 2=   Then prove that 

(n 1)
T(i)R R −= . 
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 d) Prove that for any ja, a , b, d [0, 1] , where j takes values from an index set J operation 

iw  has the following properties. 

i) ii(a, b) d iff w (a,d) b   

ii) i i iw [i (a, b), d] w [a, w (b, d)]=  

iii) i j i j
j Jj J

w supa , b inf w (a , b)


 
= 

 
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  UNIT - IV 

 

 

4. a) 
Prove that it S(Q, R)   for 

i
PoQ R=  then 

wi 1 1P̂ (Q o R )− −=  is the greatest member of 

S(Q, R). 
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b) Let the t-norm i is employed in 
i

Po Q R=  be the product and let 

.1 .12

Q .2 and R .18

.3 .27

   
   = =
   
      

 

Then find the greatest solution P̂ . 

 

 

10 

  OR 

 

 

 c) 
Prove that the fuzzy relation 

wi 1 1P (Q o R )− −=  is the best approximation in terms of the 

goodness index G defined by 
i

G(P ) P o Q R = =  of fuzzy relation equations 
i

P o Q R=  
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 d) 
Let   be the solvability index of 

i
P o Q R=  defined by 

i

P (X Y)

sup P o Q R
 

 
 = = 

 F
 

then prove that i
z Z x X y Y

int w sup R(x, z), sup Q(y, z)
  

 
    

 
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5. a) Prove that the standard fuzzy intersection is the only idempotent t- norm. 

 

5 

 b) Explain fuzzy number. 

 

5 

 c) Write some fundamental concepts associated with fuzzy partial orderings relations. 

 

5 

 d) Explain approximate solutions of fuzzy relations. 

 

 

5 

  ***********  
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