0167-Optional Paper-VII Fuzzy Mathematics-I

P. Pages: 3

GUG/S/19/2185
Time : Three Hours
Max. Marks : 100

Notes : 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let $\mathrm{A}, \mathrm{B} \in \mathcal{F}(\mathrm{X})$. Then for all $\alpha \in[0,1]$ prove that
i) $A \subseteq B$ iff ${ }^{\alpha} A \subseteq{ }^{\alpha} B$
ii) $\mathrm{A} \subseteq \mathrm{B}$ iff ${ }^{\alpha+} \mathrm{A} \subseteq{ }^{\alpha+} \mathrm{B}$
b) Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an arbitrary crisp function. Then prove that for any $\mathrm{A} \in \mathcal{F}(\mathrm{X})$ and all $\alpha \in[0,1]$ the following properties of f fuzzified by the extension principle hold.
i) $\quad{ }^{\alpha+}[f(\mathrm{~A})]=\mathrm{f}\left({ }^{\alpha+} \mathrm{A}\right)$
ii) $\quad{ }^{\alpha}[f(\mathrm{~A})] \supseteq \mathrm{f}\left({ }^{\alpha} \mathrm{A}\right)$

OR

c) Prove that every fuzzy complement has at most one equilibrium.
d) Let C be a function from $[0,1]$ to $[0,1]$. Then prove that C is a fuzzy complement iff there exists a continuous function f from $[0,1]$ to R such that $f(1)=0$, f is strictly decreasing and $c(a)=f^{-1}(f(0)-f(a))$ for all $a \in[0,1]$.

UNIT - II

2. a) Let $\mathrm{A} \in \mathscr{F}(\mathrm{R})$. Then prove that A is a fuzzy number if and only if there exists a closed interval $[\mathrm{a}, \mathrm{b}] \neq \phi$ such that
$A(x)=\left\{\begin{array}{ccc}1 & \text { for } & x \in[a, b] \\ \ell(x) & \text { for } & x \in(-\infty, a) \\ r(x) & \text { for } & x \in(b, \infty)\end{array}\right.$
where ℓ is a function from $(-\infty, a)$ to $[0,1]$ that is monotonic increasing, continuous from the right and such that $\ell(x)=0$ for $x \in\left(-\infty, w_{1}\right), r$ is a function from (b, ∞) to $[0,1]$ that is monotonic decreasing, continuous from the left and such that $\mathrm{r}(\mathrm{x})=0$ for $\mathrm{x} \in\left(\mathrm{w}_{2}, \infty\right)$.
b) Let MIN and MAX be binary operations on R defined by
$\operatorname{MIN}(A, B)(z)=\sup _{z=\min (x, y)} \min [A(x), B(y)]$ and
$\operatorname{MAX}(A, B)(z)=\sup _{z=\max (x, y)} \min [A(x), B(y)]$ for all $z \in R$ respectively. Then prove that for any $\mathrm{A}, \mathrm{B} \in \mathrm{R} \operatorname{MIN}[\mathrm{A}, \operatorname{MAX}(\mathrm{A}, \mathrm{B})]=\mathrm{A}$.

OR

c) Let MIN and MAX be binary operations on R defined by
$\operatorname{MIN}(A, B)(z)=\sup _{z=\min (x, y)} \min [A(x), B(y)]$ and
$\operatorname{MAX}(A, B)(z)=\sup _{z=\max (x, y)} \min [A(x), B(y)]$ for all $z \in R$ respectively. Then prove
that for any $A, B, C \in R$
$\operatorname{MIN}[A, \operatorname{MAX}(\mathrm{~B}, \mathrm{C})]=\operatorname{MAX}[\operatorname{MIN}(\mathrm{A}, \mathrm{B}), \operatorname{MIN}(\mathrm{A}, \mathrm{C})]$
d) Find the solution for the equation $\mathrm{A} \cdot \mathrm{X}=\mathrm{B}$ where A and B are triangular shape fuzzy numbers given by -

$$
\begin{aligned}
& A(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x \leq 3 \text { and } x>5 \\
x-3 & \text { for } & 3<x \leq 4 \\
5-x & \text { for } & 4<x \leq 5
\end{array}\right. \\
& B(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x \leq 12 \text { and } x>32 \\
(x-12) / 8 & \text { for } & 12<x \leq 20 \\
(32-x) / 12 & \text { for } & 20<x \leq 32
\end{array}\right.
\end{aligned}
$$

UNIT - III

3. a) Write four fundamental concepts associated with fuzzy partial orderings relations and further write the properties of every partial ordering relations.
b) Prove that for any fuzzy relation R on X^{2}, the fuzzy relation $R_{T(i)}=\bigcup_{n=1}^{\infty} R^{(n)}$ is the i-transitive closure of R .

OR

c) Let R be a reflexive fuzzy relation on X^{2}, where $|X|=n \geq 2$ Then prove that $\mathrm{R}_{\mathrm{T}(\mathrm{i})}=\mathrm{R}^{(\mathrm{n}-1)}$.
d) Prove that for any $a, a_{j}, b, d \in[0,1]$, where j takes values from an index set J operation w_{i} has the following properties.
i) \quad i $(a, b) \leq$ diff ${ }_{i}(a, d) \geq b$
ii) $\quad w_{i}[i(a, b), d]=w_{i}\left[a, w_{i}(b, d)\right]$
iii) $\quad w_{i}\left[\sup _{j \in J} a_{j}, b\right]=\inf _{j \in J} w_{i}\left(a_{j}, b\right)$

UNIT - IV

4. a)

Prove that it $S(Q, R) \neq \phi$ for $P \stackrel{i}{i} Q=R$ then $\hat{P}=\left(Q{ }_{o}^{w_{i}} R^{-1}\right)^{-1}$ is the greatest member of S(Q, R).
b) Let the t -norm i is employed in $\mathrm{P} \stackrel{\mathrm{i}}{\mathrm{i}} \mathrm{Q}=\mathrm{R}$ be the product and let $\mathrm{Q}=\left[\begin{array}{l}.1 \\ .2 \\ .3\end{array}\right]$ and $\mathrm{R}=\left[\begin{array}{l}.12 \\ .18 \\ .27\end{array}\right]$

Then find the greatest solution $\hat{\mathrm{P}}$.

OR

c) Prove that the fuzzy relation $\tilde{P}=\left(Q \stackrel{W_{i}}{o} R^{-1}\right)^{-1}$ is the best approximation in terms of the goodness index G defined by $G\left(P^{\prime}\right)=\left\|\mathrm{P}^{\prime} \stackrel{i}{\circ} \mathrm{Q}=\mathrm{R}\right\|$ of fuzzy relation equations $\mathrm{P} \stackrel{{ }^{\mathrm{i}}}{ } \mathrm{Q}=\mathrm{R}$
 then prove that $\delta \leq \operatorname{int}_{z \in Z} w_{i}\left(\sup _{x \in X} R(x, z), \sup _{y \in Y} Q(y, z)\right)$
5. a) Prove that the standard fuzzy intersection is the only idempotent t- norm.
b) Explain fuzzy number.
c) Write some fundamental concepts associated with fuzzy partial orderings relations.
d) Explain approximate solutions of fuzzy relations.

