## M.Sc. (Mathematics) Sem-I (Old)

# 0167-Optional Paper-VII Fuzzy Mathematics-I

P. Pages: 3
Time: Three Hours



GUG/S/19/2185

Max. Marks: 100

Notes: 1. Solve all **five** questions.

2. All questions carry equal marks.

#### UNIT - I

**1.** a) Let A, B  $\in \mathcal{F}(X)$ . Then for all  $\alpha \in [0, 1]$  prove that

10

- i)  $A \subseteq B \text{ iff } {}^{\alpha}A \subseteq {}^{\alpha}B$
- ii)  $A \subseteq B \text{ iff } \alpha^+ A \subseteq \alpha^+ B$
- b) Let  $f: X \to Y$  be an arbitrary crisp function. Then prove that for any  $A \in \mathcal{F}(X)$  and all  $\alpha \in [0, 1]$  the following properties of f fuzzified by the extension principle hold.
  - i)  $\alpha^+[f(A)] = f(\alpha^+A)$
- ii)  $\alpha[f(A)] \supset f(\alpha A)$

OR

c) Prove that every fuzzy complement has at most one equilibrium.

10

d) Let C be a function from [0, 1] to [0, 1]. Then prove that C is a fuzzy complement iff there exists a continuous function f from [0, 1] to R such that f(1) = 0, f is strictly decreasing and  $c(a) = f^{-1}(f(0) - f(a))$  for all  $a \in [0, 1]$ .

## **UNIT - II**

2. a) Let  $A \in \mathcal{F}(R)$ . Then prove that A is a fuzzy number if and only if there exists a closed interval  $[a, b] \neq \phi$  such that

$$A(x) = \begin{cases} 1 & \text{for} \quad x \in [a, b] \\ \ell(x) & \text{for} \quad x \in (-\infty, a) \\ r(x) & \text{for} \quad x \in (b, \infty) \end{cases}$$

where  $\ell$  is a function from  $(-\infty, a)$  to [0, 1] that is monotonic increasing, continuous from the right and such that  $\ell(x) = 0$  for  $x \in (-\infty, w_1)$ , r is a function from  $(b, \infty)$  to [0, 1] that is monotonic decreasing, continuous from the left and such that r(x) = 0 for  $x \in (w_2, \infty)$ .

b) Let MIN and MAX be binary operations on R defined by  $MIN(A, B)(z) = \sup \min [A(x), B(y)]$  and

10

 $MAX(A, B) (z) = \sup_{z = max(x, y)} min [A(x), B(y)] \text{ for all } z \in R \text{ respectively. Then prove}$ 

that for any  $A, B \in R$  MIN [A, MAX(A, B)] = A.

Let MIN and MAX be binary operations on R defined by c) MIN(A, B)(z) =sup  $\min [A(x), B(y)]$  and

10

10

10

$$z = \min(x, y)$$

min [A(x), B(y)] for all  $z \in R$  respectively. Then prove MAX(A, B)(z) =sup z = max(x, y)

that for any A, B,  $C \in R$ 

MIN[A, MAX(B, C)] = MAX[MIN(A, B), MIN(A, C)]

Find the solution for the equation  $A \cdot X = B$  where A and B are triangular shape fuzzy d) numbers given by -

$$A(x) = \begin{cases} 0 & \text{for } x \le 3 \text{ and } x > 5 \\ x - 3 & \text{for } 3 < x \le 4 \\ 5 - x & \text{for } 4 < x \le 5 \end{cases}$$

$$B(x) = \begin{cases} 0 & \text{for } x \le 12 \text{ and } x > 32 \\ (x - 12)/8 & \text{for } 12 < x \le 20 \\ (32 - x)/12 & \text{for } 20 < x \le 32 \end{cases}$$

$$B(x) = \begin{cases} 0 & \text{for } x \le 12 \text{ and } x > 32 \\ (x - 12)/8 & \text{for } 12 < x \le 20 \\ (32 - x)/12 & \text{for } 20 < x \le 32 \end{cases}$$

## **UNIT - III**

- Write four fundamental concepts associated with fuzzy partial orderings relations and 10 **3.** a) further write the properties of every partial ordering relations.
  - 10 b) Prove that for any fuzzy relation R on  $X^2$ , the fuzzy relation  $R_{T(i)} = \bigcup_{n=1}^{\infty} R^{(n)}$  is the i-transitive closure of R.

OR

- Let R be a reflexive fuzzy relation on  $X^2$ , where  $|X| = n \ge 2$  Then prove that c)  $R_{T(i)} = R^{(n-1)}.$
- Prove that for any  $a, a_j, b, d \in [0, 1]$ , where j takes values from an index set J operation 10 d) w<sub>i</sub> has the following properties.
  - $i(a, b) \le d \text{ iff } w_i(a, d) \ge b$
  - $w_i[i(a, b), d] = w_i[a, w_i(b, d)]$
  - iii)  $w_i \begin{bmatrix} \sup_{j \in J} a_j, b \end{bmatrix} = \inf_{j \in J} w_i(a_j, b)$

### **UNIT-IV**

10 4. a) Prove that it  $S(Q, R) \neq \phi$  for  $P \stackrel{i}{o} Q = R$  then  $\hat{P} = (Q \stackrel{w_i}{o} R^{-1})^{-1}$  is the greatest member of S(Q, R).

GUG/S/19/2185

b) Let the t-norm i is employed in  $P \stackrel{i}{o} Q = R$  be the product and let  $Q = \begin{bmatrix} .1 \\ .2 \\ .3 \end{bmatrix}$  and  $R = \begin{bmatrix} .12 \\ .18 \\ .27 \end{bmatrix}$ Then find the greatest solution  $\hat{P}$ .

OR

- Prove that the fuzzy relation  $\tilde{P} = (Q \circ R^{-1})^{-1}$  is the best approximation in terms of the goodness index G defined by  $G(P') = \|P' \circ Q = R\|$  of fuzzy relation equations  $P \circ Q = R$
- d) Let  $\delta$  be the solvability index of  $P \stackrel{i}{o} Q = R$  defined by  $\delta = \sup_{P \in \mathcal{F}(X \times Y)} \left\{ \left\| P \stackrel{i}{o} Q = R \right\| \right\}$  then prove that  $\delta \leq \inf_{z \in Z} w_i \left( \sup_{x \in X} R(x, z), \sup_{y \in Y} Q(y, z) \right)$
- 5. a) Prove that the standard fuzzy intersection is the only idempotent t- norm.
  - b) Explain fuzzy number. 5
  - c) Write some fundamental concepts associated with fuzzy partial orderings relations. 5
  - d) Explain approximate solutions of fuzzy relations. 5

\*\*\*\*\*