M.Sc. I (Computer Science) (C.B.C.S. Pattern) Sem-I **PSCSCT02 - Paper-II : Discrete Mathematics**

P. Pages: 2 Time: Three Hours			GUG/S/19/11143 Max. Marks : 80
	Note	es: 1. All questions are compulsory and carry equal marks. 2. Draw neat and labeled diagram and use supporting data v 3. Avoid vague answer and write specific answers related to	-
1.	Eithe a)	er What is sets? Explain different operations on sets.	8
	b)	Show that i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$	8
		OR	
	c)	Let A, B and C be finite sets then $ A \cup B \cup C = A + B + C - A \cap B - B \cap C - A \cap C + A \cap C $	B∩C
	d)	Define Disjunction Normal form's. Obtain disjunction normal form $\neg (P \lor Q) \rightleftarrows (P \land Q)$	m of 8
2.	Eith	er	
	a)	Prove that number of different permutations of n distinct objects, to given by ${}^{n}p_{r} = \frac{n!}{(n-r)!} = n \cdot (n-1) \cdot (n-2) \dots (n-r+1)$	taken r at a time, $r \le n$ is 8
	b)	Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (4, 1)\}$ Draw diagraph for relation R. OR	8
	c)	Show that if n Pigeons are assigned to m Pigeonholes then one of contain at least $[(n-1)/m] + y$ pigeons	the Pigeonholes must 8
	d)	Let $A = \{a, b, c, d, e\}$ and $R = \{(a, a), (a, b), (b, c), (c, e)$ $(c, d), (d, e)\}$ Computer (a) R^2 (b) R^{∞}	8
3.	Eith	er	
	a)	Define the following term's with Example i) Undirected Graph's ii) Graph iii) Tree iv) Binary tree	8

b) Show that following graph are isomorphic.

OR

- c) Construct the tree,
 - i) $3-(x+(6*(4\div(2-3))))$
 - ii) $(x+(y-(x+y)))\times(((3\div(2\times7))\times4)$
- d) In a lattice prove that $(a*b) \oplus (a*c) \le a*[b \oplus (a*c)]$

4. Either

- a) If H and K are subgroup of G show that $H \cap K$ is a subgroup of G.
- b) Let $v = \{v_0, w\}$, $s = \{a, b\}$ and \mapsto be a relation on v * given by

$$v_0 \mapsto bv_0$$

$$v_0 \mapsto aw$$

$$w \mapsto bw$$

$$w \mapsto b$$

Find L(G) and Derivation tree for it.

OR

- c) Explain Finite-state Machines in Detail.
- d) Find out Moore Machine, whose table is shown below.

	a	b	С
S_0	S_0	S_0	S_0
S_1	S_2	S_3	S_2
S_2	S_1	S_0	S_3
S_3	S_3	S_2	S_3

- **5.** Solve all questions.
 - a) To Find equivalency of statement $p \rightarrow q \equiv (\sim p) \lor q$

4

8

8

8

8

8

8

8

- b) Determine the value of following
 - i) ¹⁰C₆

ii) ⁵²C₄

- c) Define following
 - i) Adjacent Node
- ii) Diagraph
- d) Write a short note on Derivation trees.

4
