M.Sc. (Computer Science)-I Sem-I (Old) 1MSC1 - Paper-I : Discrete Mathematical Structure

P. Pages : 2 Time : Three Hours				GUG/S/19/2878 Max. Marks : 80			
	Note	es: 1 2 3	All questions are compulsory and carry equal marks. Draw neat and labeled diagram and use supporting da Avoid vague answer and write specific answer related	ta wherever necessary. I to questions.			
1.		Eithe					
	a)	a) Prove that If A and B are finite set then $ A \cup B = A + B - A \cap B $.					
	b)	Cons	truct the truth table for following.	8			
		i)	$A \oplus B \oplus C$ ii) $(p \rightarrow q) \equiv ((-q))$	p $\rightarrow \sim p$			
		iii)	$\sim (p \rightarrow q) \equiv (p \land \sim q) \qquad \qquad \text{iv)} \qquad (p \land q) \rightarrow q$				
			OR				
	c)	Prov	te that statement is true by using mathematical induction. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$	8			
	d)	Shov i) ii)	w that: $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$ $(P \lor Q) \land (\neg P \land (\neg P \lor Q)) \Leftrightarrow (\neg P \land Q)$	8			
2.	Eithe	er					
	a)	To P i) ii)	rove $p(n,r) = p(n-1, r) + r \cdot p(n-1, r-1)$ $p(n,r) = n \cdot p(n-1, r-1)$	8			
	b)	Let	$x = \{1, 2, 3, 4\}$ and $R = \{(x, y) / x < y)\}$ Draw diagraph of 1	R and it's Matrix. 8			
			OR				
	c)	Let A	A, B and C be the subsets of u prove that $A \times (B \cup C) = (A \cup C)$	$(\times B) \cup (A \times C)$. 8			
	d)	Let x	$= \{1, 2, 3\}, y = \{a, b\}$ and $z = \{5, 6, 7\}$. Consider the fur	actions 8			

d) Let $x = \{1, 2, 3\}$, $y = \{a, b\}$ and $z = \{5, 6, 7\}$. Consider the functions $f = \{(1, a), (2, a), (3, b)\}$ and $g = \{(a, 5), (b, 7)\}$ as in fig (a) and (b) Find the composition of gof.

3. Either

Show that diagram showing fig. (a) and fig. (b) are Isomorphic. a)

u5

u₃

ii) $(3-(2-(11-(9-4)))) \div (2+(3+(4+7)))$

 $a * (a \oplus b) = a$

4. Either

b)

c)

d)

i)

i)

- Show that If 'f' is a homomorphism from a commutative semigroup (S, *) onto a a) semigroup (T, *'), then (T, *') is also commutative.
- Let G be the grammar b) $S \rightarrow aB | bA$ $A \rightarrow a \mid aS \mid bAA$ $B \rightarrow b \mid bS \mid aBB$ for the string 'aaa bb abbba' Find a) Leftmost derivation Rightmost derivation Parse tree b) c)

OR

C)	Prove the left cancellation law i.e. $ab = ac \Rightarrow b = c \forall a, b, c \in G$ (left Cancellation law)	8							
d)	Find the left linear and right linear grammar for following language. $(0 + 1)^{*} = (0 + 1)^{*} =$								
	1) $0(1(0+1))$ 11) $(0+1) 00(0+1)$ 111) $(((0+10)11) 00)$								
	Solve all questions.								
	a) Explain conditional statement and Biconditional statement with truth table.								

<i>u</i>)	Emplain conditional statement and			-
b)	Prove that ${}^{n}C_{n-r} = {}^{n}C_{r}$, $\dot{n} \ge r \ge 1$			4
c)	Define following term's –			4
	i) Graph	ii)	Adjacent Node	
d)	Explain Moore Machine.		-	4

5.

8

8

8

8

8

0