B.E. Instrumentation Engineering (C.B.C.S. Pattern) Sem-III

3BEIE03 - Network Theory

P. Pages: 4

GUG/S/19/11513
Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Due credit will be given to neatness and adequate dimensions.
3. Assume suitable data wherever necessary.

1. a) Find the value of $R_{1} \& R_{2}$ in the network sown in figure 1 , using mesh analysis.

Figure 1
b) Find out the voltage across 40Ω and the power supplied by the 5 A source using nodal analysis for the network shown in figure 2 .

Figure 2

OR

2. a) Find out the power delivered to the 4Ω resistor using mesh analysis for the network shown in figure 3 . To what voltage should the 100 V battery be changed so that no power is delivered to the 4Ω resistor?

Figure 3
b) Write a short note on :
i) Supermesh
ii) Supernode
3. a) State and discuss reciprocity theorem.
b) Find the Thevenins and Norton's equivalents for the circuit shown in figure 4 with respect to terminal ab.

Figure 4

OR

4. a) State the maximum power transfer theorem for the d.c. circuits. Also derive the condition for maximum power transfer.
b) Calculate the current I in the network shown in figure 5, using Millman's theorem.

Figure 5
5. a) Obtain the expression for the complex impedance for the ckt shown in the figure 6 . Also draw impedance diagram.

b) For the circuit shown in figure 7, a voltage $\mathrm{V}(\mathrm{t})$ is applied in the resulting current in the circuit $\mathrm{i}(\mathrm{t})=15 \sin \left(\mathrm{wt}+30^{\circ}\right) \mathrm{A}$. Determine the active power, reactive power, power factor \& the apparent power.

Figure 7

OR

6. a) Determine the equivalent impedance of the network shown in figure. 8 .

Figure 8
b) Two impedances, $\mathrm{z}_{1}=10 \angle-60^{\circ} \Omega \& \mathrm{z}_{2}=16 \angle 70^{\circ} \Omega$ are in series and pass an effective current of 5 A . Determine the active power, reactive power, apparent power and power factor.
7. a) Determine the Thevenins equivalent between the output terminals for the network shown in figure 9.

Figure 9
b) In the network shown in figure 10 , the switch is moved from position 1 to position 2 at $\mathrm{t}=0$.

The switch is in position 1 for a long time. Determine the current expression $\mathrm{i}(\mathrm{t})$.

Figure 10

OR

8. a) In the circuit shown in figure 11, determine the current equations for i_{1} and i_{2} when the switch is closed at $\mathrm{t}=0$.

Figure 11
b) For the circuit shown in figure 12, find the value of z that will receive maximum power. Also determine this power.

9. a) Find the Y-parameter for the network shown in figure 13.

b) Define z-parameters for two port network. Also express the z parameters in terms of Y-parameters.

OR

10. a) Find the h-parameters of the network shown in figure 14.

b) Define two-port networks discuss the open circuit impedance (z) parameters and short circuit admittance (Y) parameters.
