B.E. Electrical (Electronics \& Power) Engineering Sem-IV
 EP-403 : Analog and Digital Circuits

P. Pages : 2

GUG/S/19/1551
Time : Three Hours

Max. Marks : 80

Notes : 1. All questions carry marks as indicated.
2. Assume suitable data wherever necessary.
3. Illustrate your answers wherever necessary with the help of neat sketches.

1. a) Use Karnaugh-map technique for solving the following. Also realize it using logic gates.
i) $y=m_{0}+\mathrm{m}_{2}+\mathrm{m}_{4}+\mathrm{m}_{6}+\mathrm{m}_{8}+\mathrm{m}_{10}+\mathrm{m}_{12}+\mathrm{m}_{14}+\mathrm{d}_{5}+\mathrm{d}_{7}$
ii) $\mathrm{f}=\mathrm{m}_{0}+\mathrm{m}_{3}+\mathrm{m}_{5}+\mathrm{m}_{6}+\mathrm{m}_{9}+\mathrm{m}_{10}+\mathrm{m}_{12}+\mathrm{m}_{15}+\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{8}$

Note: - $\{\mathrm{m}$-minterms and d-don't cares $\}$
b) Using suitable Multiplexer implement the following logic equation

$$
\mathrm{F}(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{~S})=\Sigma \mathrm{m}(0,2,3,5,6,8,10,13)
$$

Assume S as the input link to the MUX.

OR

2. a) Design 4 - bit binary to gray code and Gray code to binary converters.
b) Explain how two half adders can be used to get full adder function.
3. a) Explain the concept of clock in SR flip flop. Explain the working using suitable logic diagram.
b) Which triggering methods are used in flip flops. Which is the most preferred method? why?

OR

4. a) Design \& Explain Modulo- 06 counter.
b) Explain 4 - bit Bidirectional shift register operation using suitable diagram.
5. a) Draw internal block diagram of operational amplifier (op-amp). Explain function of each block.
b) Define and give typical values of following op-amp parameters for IC741.
i) I/p offset voltage
ii) Slew Rate
iii) PSRR
iv) CMRR

OR

6. a) Explain Dominant pole freq. compensation and pole-zero compensation technique in op-amp.
b) For non-inverting amplifier configuration of op-amp if $R_{F}=10 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega$, supply voltage applied is $\pm 12 \mathrm{~V}$. Draw the input output waveforms if the above circuit is applied with input as.
i) 1 KHz sine wave with $\mathrm{V}_{\mathrm{m}}=5 \mathrm{~V}$
ii) 1 KHz sine wave with $\mathrm{V}_{\mathrm{m}}=10 \mathrm{mV}$
7. a) Explain voltage to current converter with grounded load using op-amp.
b) Draw practical integrator circuit. How it is different from ideal circuit. Draw its response and explain working.

OR

8. a) Using op-amp implement the equation.
$\mathrm{V}_{0}=3 \mathrm{~V}_{1}-2 \mathrm{~V}_{2}+\mathrm{V}_{3}$.
b) Derive the output equation for three input inverting summing amplifier circuit.
9. a) Explain inverting Schmitt Trigger with neat circuit diagram and waveforms. Also draw the voltage transfer curve for above circuit.
b) Using internal block diagram explain the working of Astable multivibrator using IC555.

Give the equations for $\mathrm{T}_{\mathrm{ON}}, \mathrm{T}_{\mathrm{OFF}}$ and frequency of oscillations.

OR

10. a) Draw and explain working of full wave precision rectifier with neat circuit diagram and waveforms.
b) Write note on monostable multivibrator using IC555.
