B.E. Electrical (Electronics & Power) Engineering Sem-IV **EP-403 : Analog and Digital Circuits**

	ages : le : Th	ee Hours * 1 2 0 5 * Max. Marks	
	Note	 All questions carry marks as indicated. Assume suitable data wherever necessary. Illustrate your answers wherever necessary with the help of neat sketches. 	
1.	a)	Use Karnaugh-map technique for solving the following. Also realize it using logic gates. i) $y=m_0+m_2+m_4+m_6+m_8+m_{10}+m_{12}+m_{14}+d_5+d_7$ ii) $f=m_0+m_3+m_5+m_6+m_9+m_{10}+m_{12}+m_{15}+d_1+d_2+d_8$ Note: - {m-minterms and d-don't cares}	8
	b)	Using suitable Multiplexer implement the following logic equation $F(P, Q, R, S) = \Sigma m(0, 2, 3, 5, 6, 8, 10, 13)$ Assume S as the input link to the MUX.	8
		OR	
2.	a)	Design 4 - bit binary to gray code and Gray code to binary converters.	8
	b)	Explain how two half adders can be used to get full adder function.	8
3.	a)	Explain the concept of clock in SR flip flop. Explain the working using suitable logic diagram.	8
	b)	Which triggering methods are used in flip flops. Which is the most preferred method? why?	8
		OR	
4.	a)	Design & Explain Modulo- 06 counter.	8
	b)	Explain 4 - bit Bidirectional shift register operation using suitable diagram.	8
5.	a)	Draw internal block diagram of operational amplifier (op-amp). Explain function of each block.	8
	b)	Define and give typical values of following op-amp parameters for IC741. i) I/p offset voltage ii) Slew Rate iii) PSRR iv) CMRR	8
		OR	
6.	a)	Explain Dominant pole freq. compensation and pole-zero compensation technique in op-amp.	8

b) For non-inverting amplifier configuration of op-amp if $R_F = 10\,\mathrm{k}\Omega$, $R_1 = 1\mathrm{k}\Omega$, supply voltage applied is $\pm 12\mathrm{V}$. Draw the input output waveforms if the above circuit is applied with input as.

8

8

8

8

- i) 1 KHz sine wave with $V_m = 5V$
- ii) 1 KHz sine wave with $V_m = 10 \text{mV}$
- 7. a) Explain voltage to current converter with grounded load using op-amp. 8
 - b) Draw practical integrator circuit. How it is different from ideal circuit. Draw its response and explain working.

OR

- 8. a) Using op-amp implement the equation. $V_0 = 3V_1 2V_2 + V_3 \, . \label{eq:v0}$
 - b) Derive the output equation for three input inverting summing amplifier circuit.
- **9.** a) Explain inverting Schmitt Trigger with neat circuit diagram and waveforms. Also draw the voltage transfer curve for above circuit.
 - b) Using internal block diagram explain the working of Astable multivibrator using IC555. **8** Give the equations for T_{ON}, T_{OFF} and frequency of oscillations.

OR

- 10. a) Draw and explain working of full wave precision rectifier with neat circuit diagram and waveforms.
 - b) Write note on monostable multivibrator using IC555.

GUG/S/19/1551