B.E.(with Credits)-Regular-Semester 2012- All Branches Sem I & II (Old Pattern)

105 - Applied Mathematics-I

P. Pages: 3
Time: Three Hours

GUG/S/18/3665

Max. Marks: 80

Notes: 1. All questions carry equal marks.

- 2. Use of non-programmable calculator is permitted.
- 1. a) Find the n^{th} differential coefficient of $\cos 2x \cdot \cos 3x$.

3

- b) If $y = x \log \left(\frac{x-1}{x+1} \right)$ Then prove that $\frac{d^n y}{dx^n} = (-1)^n (n-2)! \left[\frac{x-n}{(x-1)^n} \frac{x+n}{(x+1)^n} \right]$.
- c) If $y = \sin \{ \log (x^2 + 2x + 1) \}$ Then show that $(x+1)^2 y_{n+2} + (2n+1)(x+1) y_{n+1} + (n^2 + 4) y_n = 0.$

OR

- 2. a) If $y = \sin(2\sin^{-1}x)$ Then prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2-4)y_n = 0$ Hence or otherwise show that $\sin(2\sin^{-1}x) = 2x - x^3 - \frac{x^5}{5} - \cdots$
 - b) Expand $2x^3 + 7x^2 + x 2$ in powers of (x 2) by using Taylor's theorem.
 - Evaluate $\lim_{x\to 0} \frac{x e^x \log(1+x)}{x \sin x}$.
- 3. a) If $u = x \log(x+r) r$ where $r^2 = x^2 + y^2$ Then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{x+r}$.
 - b) If $u = \tan^{-1}(y^2/x)$ Then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin 2u \sin^2 u$.

OR

4. a) If $u = \frac{\left(x^2 + y^2\right)^n}{2n(2n-1)} + x f(y/x)$ Then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(x^2 + y^2\right)^n$.

- b) If u = f(x, y) where $x = s \cos \alpha t \sin \alpha$ and $y = s \sin \alpha + t \cos \alpha$ Then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2}$.
- 5. a) If $x = r \cos \theta$ and $y = r \sin \theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(r,\theta)}{\partial(x,y)}$ and varify that $\frac{\partial(x,y)}{\partial(r,\theta)} \times \frac{\partial(r,\theta)}{\partial(x,y)} = 1.$
 - b) Expand $e^x \log(1+y)$ in powers of x and y as far as term containing third degree by using Maclaurin's theorem.

OR

6. a) If
$$u = \frac{x+y}{x-y}$$
 and $v = \frac{xy}{(x-y)^2}$.

Are u and v functionally related? If so, find the relation between them.

b) Show that the stationary value of $u=x^my^nz^p$ where x+y+z=a is $m^mn^np^p\left(\frac{a}{m+n+p}\right)^{m+n+p}$

by using Langrange's method of undetermined multipliers.

- 7. a) By differentiating under the integral sign

 Evaluate $\int_{0}^{\infty} \frac{e^{-ax} \sin x}{x} dx$ Hence show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$
 - b) Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-3\sqrt{x}} dx$
 - Evaluate $\int_{0}^{a} x^4 \sqrt{a^2 x^2} dx$

OR

- 8. a) Trace the curve $xy^2 = 4a^2(2a-x)$.

 Also find the area included between the curve and its asymptote.
 - b) Find the root mean square value of $f(x) = \log x$ over the range x = 1 to x = e, substitute the value of e in the result and evaluate it further.

9. a) Fit a second degree parabola $y = a + bx + cx^2$ for the following data.

X	20	30	40	50	60
y	54	90	138	206	292

b) Calculate the coefficient of correlation and equations to the lines of regressions for the following data.

		,						
X	1	3	4	6	8	9	11	14
У	1	2	4	4	5	7	8	9

OR

8

8

8

8

10. a) Fit a curve of the type $y = ab^x$ to the following data.

						_	
X	1	2	3	4	5	6	
У	1.6	4.5	13.8	40.2	125	300	

b) Calculate the rank correlation coefficient for the following data.

X	60	34	40	50	45	40	22	43	42	66	64	46
У	75	32	33	40	45	30	12	30	34	72	41	57
